por _bruno94 » Sex Mai 31, 2013 00:28
Boa noite!
Pessoal, não sei nem como começar este limite. A resposta é 1.
Alguém poderia me ajudar por favor?

-
_bruno94
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Dom Abr 07, 2013 22:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Computação
- Andamento: cursando
por Jhonata » Sex Mai 31, 2013 00:45
_bruno94 escreveu:Boa noite!
Pessoal, não sei nem como começar este limite. A resposta é 1.
Alguém poderia me ajudar por favor?

Sugestão: Multiplique o numerador e o denominador pelo conjugado:
![\lim_{x \rightarrow\infty} ({{\sqrt{x^2 + x +1} - {\sqrt{x^2 - x +1} })\frac{\sqrt[]{x^2+x+1}+\sqrt[]{x^2-x+1}}{\sqrt[]{x^2+x+1}+\sqrt[]{x^2-x+1}} \lim_{x \rightarrow\infty} ({{\sqrt{x^2 + x +1} - {\sqrt{x^2 - x +1} })\frac{\sqrt[]{x^2+x+1}+\sqrt[]{x^2-x+1}}{\sqrt[]{x^2+x+1}+\sqrt[]{x^2-x+1}}](/latexrender/pictures/2ba202d8c3ea37a1c7d4426939cdbd56.png)
Opere o numerador, fazendo as devidas simplificações... Tente fazer, se não conseguir, poste que eu resolverei.
OBS: Só não resolvi agora aqui porque a página está muito lenta pra atualizar e não consigo visualizar minha edição no latex.
" A Matemática é a honra do espírito humano - Leibniz "
-

Jhonata
- Usuário Parceiro

-
- Mensagens: 66
- Registrado em: Sáb Mai 26, 2012 17:42
- Localização: Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenheria Mecânica - UFRJ
- Andamento: cursando
por _bruno94 » Sex Mai 31, 2013 00:55
Caro Jhonata,
Muitíssimo obrigado! Estava precisando mesmo só desse empurrãozinho inicial, rs. desenvolvi e cheguei na resposta corre. : )
Mais uma vez, obrigado.
Boa noite.
-
_bruno94
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Dom Abr 07, 2013 22:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Computação
- Andamento: cursando
por Jhonata » Sex Mai 31, 2013 01:30
_bruno94 escreveu:Caro Jhonata,
Muitíssimo obrigado! Estava precisando mesmo só desse empurrãozinho inicial, rs. desenvolvi e cheguei na resposta corre. : )
Mais uma vez, obrigado.
Boa noite.
Disponha! É pra isso que estou aqui.
Bons estudos e uma boa noite também!

" A Matemática é a honra do espírito humano - Leibniz "
-

Jhonata
- Usuário Parceiro

-
- Mensagens: 66
- Registrado em: Sáb Mai 26, 2012 17:42
- Localização: Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenheria Mecânica - UFRJ
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Limite com x tendendo ao infinito
por PeterHiggs » Ter Mar 04, 2014 16:53
- 2 Respostas
- 3567 Exibições
- Última mensagem por PeterHiggs

Ter Mar 04, 2014 23:08
Cálculo: Limites, Derivadas e Integrais
-
- Determinar o limite tendendo ao infinito.
por Arthur_Bulcao » Sex Mar 23, 2012 17:34
- 6 Respostas
- 5051 Exibições
- Última mensagem por Arthur_Bulcao

Qua Mar 28, 2012 19:08
Cálculo: Limites, Derivadas e Integrais
-
- Limite: Cosseno(x) e Seno(x) com X tendendo a infinito
por lucasguilherme2 » Qui Mai 24, 2012 11:49
- 3 Respostas
- 44199 Exibições
- Última mensagem por LuizAquino

Ter Mai 29, 2012 11:54
Cálculo: Limites, Derivadas e Integrais
-
- (Limite) tendendo a - infinito com raiz cúbica
por kAKO » Qui Mai 07, 2015 12:18
- 1 Respostas
- 4235 Exibições
- Última mensagem por adauto martins

Sáb Mai 09, 2015 15:46
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] limite trigonométrico quando x tende ao infinito
por Ge_dutra » Seg Jan 28, 2013 10:13
- 2 Respostas
- 6957 Exibições
- Última mensagem por Ge_dutra

Ter Jan 29, 2013 14:20
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
[calculo] derivada
Autor:
beel - Seg Out 24, 2011 16:59
Para derivar a função
(16-2x)(21-x).x
como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?
Assunto:
[calculo] derivada
Autor:
MarceloFantini - Seg Out 24, 2011 17:15
Você poderia fazer a distributiva e derivar como um polinômio comum.
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:26
Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:31
derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.