• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[dúvida] integral exponencial Ei(z)?

[dúvida] integral exponencial Ei(z)?

Mensagempor Jasbinschek » Qua Mai 29, 2013 01:17

Então, eu peguei uma integral hoje que eu não consegui resolver, procurei na internet e achei o resultado dela, mas eu gostaria de saber o motivo, como eu chego nela?
o nosso querido Wolfram me disse isso:
http://www.wolframalpha.com/input/?i=in ... -x%29%29dx

a integral é a seguinte:
\int\   e^{-x}x^{-1} dx

alguém pode me explicar como isso funciona?
obrigado.
Jasbinschek
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Mai 29, 2013 01:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da comp.
Andamento: cursando

Re: [dúvida] integral exponencial Ei(z)?

Mensagempor temujin » Qua Mai 29, 2013 11:04

Acho que dá pra fazer por partes.

Vejamos:

\\
u= x \rightarrow du=dx \\
v=e^{-x} \rightarrow dv = -e^{-x}dx

\int e^{-x}x^{-1}dx = -x.e^{-x} + \int e^{-x}dx = -x.e^{-x} - e^{-x} = -e^{-x}(x+1) + C

Agora, um detalhe. Essa é uma função gamma, né? Se integrar de 0 a mais infinito ela vai ter essa cara:

\Gamma(n) = \int_0^\infty x^{n-1}e^{-x}dx = (n-1)!

Eu não conheço a demonstração, mas acho que não deve ser difícil de encontrar.
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: [dúvida] integral exponencial Ei(z)?

Mensagempor Jasbinschek » Qua Mai 29, 2013 20:11

Eu tentei por partes, mas na parte que fica integral de Vdu é x^{-2}e^{-x} afinal o u tem que ser igual a x^{-1}
então cresce infinitamente...
e sim, é uma função gamma
Jasbinschek
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Mai 29, 2013 01:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da comp.
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}