por Jefferson_mcz » Seg Mai 27, 2013 16:41
Se a Equação de movimento de uma partícula for dada por s = Acos(wt + ?), dizemos que a partícula está em ''movimento harmônico simples''.
a) Encontre a velocidade da partícula no instante ''t''.
b) Quando a velocidade é zero ?
-
Consegui fazer a letra ''a'', porem na letra ''b'' não veio a ideia, alguém tem alguma ?
-
Jefferson_mcz
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sáb Mar 16, 2013 11:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivadas]Duvida nessa questão
por Flavio50 » Dom Abr 19, 2015 12:45
- 2 Respostas
- 1761 Exibições
- Última mensagem por Flavio50

Seg Abr 27, 2015 13:47
Cálculo: Limites, Derivadas e Integrais
-
- Questão envolvendo derivadas:
por arthurvct » Qui Mai 16, 2013 17:15
- 2 Respostas
- 1474 Exibições
- Última mensagem por arthurvct

Qui Mai 16, 2013 19:10
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] Questão simples de derivada.
por Gustavo195 » Ter Mai 14, 2013 17:52
- 0 Respostas
- 1399 Exibições
- Última mensagem por Gustavo195

Ter Mai 14, 2013 17:52
Cálculo: Limites, Derivadas e Integrais
-
- derivadas como fazer essa questão
por eulercx » Qua Dez 16, 2015 23:48
- 2 Respostas
- 5020 Exibições
- Última mensagem por eulercx

Qui Jan 14, 2016 10:22
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas - Questão envolvendo prova e angulo
por RuuKaasu » Sáb Dez 26, 2015 23:57
- 0 Respostas
- 1653 Exibições
- Última mensagem por RuuKaasu

Sáb Dez 26, 2015 23:57
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.