• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral definida]

[Integral definida]

Mensagempor Ge_dutra » Qui Mai 09, 2013 01:06

Boa noite, estou começando agora meus estudos sobre integral e tenho algumas dúvidas básicas.

Por exemplo na seguinte questão: \int_{-1}^{1}\left(({\sqrt[3]{t}})^{2} -2\right)dt, é para resolver por substituição; tentei colocar o \sqrt[3]{t} como sendo o meu u, mas não deu mt certo.

Então, como resolver?

Desde já agradeço.
Ge_dutra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Jan 28, 2013 09:45
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Integral definida]

Mensagempor Russman » Qui Mai 09, 2013 01:48

Lembre-se que \left (\sqrt[3]{t}  \right )^{2} = t^{\frac{2}{3}},

que \int t^{n}dt=\frac{t^{\left ( n +1\right )}}{n+1} e que

\int \left (f\left ( t \right )+g\left ( t \right )  \right ) dt = \int f\left ( t \right )dt+ \int g\left ( t \right )dt.

Com isso voce consegue resolver a questão.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Integral definida]

Mensagempor Ge_dutra » Sáb Mai 11, 2013 18:10

Perdão, mas ainda não deu certo. Talvez eu esteja errando em conta, já que encontrei o dobro do valor, mas não estou enxergando o erro. Poderia especificar as contas por favor?
Ge_dutra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Jan 28, 2013 09:45
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.