por Blame » Qua Abr 24, 2013 19:52
Eu não consigo mostrar que essas sentenças são verdadeiras (provar as coisas é sempre complicado):
I) Se f é uma função polinomial, então lim (x->a) f(x) = f(a) para todo real a
2) Se g é uma função racional e a pertence ao domínio de g, então lim (x->a) g(x) =g(a).
-
Blame
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qua Abr 24, 2013 19:38
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por e8group » Sex Abr 26, 2013 21:32
Observe que as funções polinomiais são contínuas e que as funções racionais é uma razão de funções polinomiais .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Geometria Analítica] Provar propriedades dos quadriláteros
por ASilvestre » Qua Ago 24, 2016 21:11
- 0 Respostas
- 2392 Exibições
- Última mensagem por ASilvestre

Qua Ago 24, 2016 21:11
Geometria Analítica
-
- Propriedades Operatórias do Limite
por J0elKim » Qui Abr 18, 2013 22:55
- 2 Respostas
- 2159 Exibições
- Última mensagem por J0elKim

Dom Abr 21, 2013 19:59
Cálculo: Limites, Derivadas e Integrais
-
- Provar que não tem limite
por citadp » Qua Abr 03, 2013 12:24
- 1 Respostas
- 1365 Exibições
- Última mensagem por Douglas16

Qua Abr 03, 2013 16:11
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Provar continuidade
por Man Utd » Qua Abr 03, 2013 09:41
- 2 Respostas
- 1280 Exibições
- Última mensagem por Man Utd

Qua Abr 03, 2013 19:43
Cálculo: Limites, Derivadas e Integrais
-
- [limites] provar que existe o limite
por heric » Qui Out 13, 2011 14:36
- 4 Respostas
- 3443 Exibições
- Última mensagem por LuizAquino

Seg Out 17, 2011 11:35
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.