• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas

Derivadas

Mensagempor xafabi » Seg Abr 22, 2013 21:24

Ola amigos poderiam ajudar

1) Calcule a derivada da seguinte função:

http://img16.imageshack.us/img16/6927/clipboard022r.jpg

f(x) = e^{(x^2 - 2x)} + sen(\sqrt{x})


2) Encontre a equação da reta tangente à função no ponto (1,0).

http://imageshack.us/a/img268/6820/clipboard026.jpg

y = e^{xcos(x)}
xafabi
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Abr 02, 2013 22:40
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Derivadas

Mensagempor marinalcd » Seg Abr 22, 2013 23:13

1) f(x) = e^{(x^2 - 2x)} + sen(\sqrt{x})

Logo a derivada será:

f'(x) = (2x - 2). e^{(x^2 - 2x)} + cos(\sqrt{x}) . \frac{1}{2.\sqrt[]{x}}

2) y = e^{xcos(x)}

Primeiro devemos calcular a derivada da função:

y'   =   (cosx - x. senx) e^{x.cosx}

Agora você deve substituir o ponto (1,0) na equação acima para descobrir o coeficiente angular.
Depois basta você montar uma equação que passe nesse ponto e que tenha o coeficiente angular encontrado!
Tente terminar daqui....

Qualquer dúvida poste novamente!
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Derivadas

Mensagempor xafabi » Qua Abr 24, 2013 10:33

Ola amigo não estou conseguindo terminar essa segunda ainda sou muito novo nessa materia, poderia ajudar?
xafabi
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Abr 02, 2013 22:40
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}