• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite modular, me ajudem!

Limite modular, me ajudem!

Mensagempor arthurvct » Ter Abr 23, 2013 14:50

\lim_{x->0} (|2x-1|-|2x+1|)/x, alguém por favor faz passo a passo? Vai me ajudar muito!
arthurvct
 

Re: Limite modular, me ajudem!

Mensagempor arthurvct » Ter Abr 23, 2013 15:26

up!!!!
arthurvct
 

Re: Limite modular, me ajudem!

Mensagempor e8group » Ter Abr 23, 2013 16:59

Por definição de módulo , |a| = \begin{cases} -a ; a < 0 \\ a ; a \geq 0 \end{cases} . Assim ,

|2x -1| = \begin{cases} -(2x-1) ; 2x-1 < 0  \\ 2x-1 ; 2x-1 \geq 0  \end{cases}

e

|2x +1| = \begin{cases} -(2x+1) ; 2x+1 < 0  \\ 2x+1 ; 2x+1 \geq 0 \end{cases}

Como (2x - 1) < 0 e 2x + 1 > 0 quando x se aproxima de zero .Então ,

\lim_{x\to0} \frac{|2x-1| -|2x+1|}{x}  = \lim_{x\to0} \frac{-(2x-1) -(2x+1)}{x} .

Tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite modular, me ajudem!

Mensagempor arthurvct » Ter Abr 23, 2013 17:18

ah entendi! dá -4??
arthurvct
 


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.