por markitodq » Dom Abr 21, 2013 09:47
Estou com duvida nessa questão,se alguém conseguir me ajudar irá me ajudar muito .
Comprove que as hipóteses do teorema do valor médio estão satisfeitas pela função dada no intervalo indiciado. Ache,então ,um valor adequado de "c" que satisfaça a conclusão do teorema dos valor médio.
a) f(x) = x²+ 2x - 1 ; [0,1] B) f(x) = raiz de 1 - senx ; [ 0, 1/2 pi, ]
-
markitodq
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Dom Abr 21, 2013 09:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: ciencias economicas
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- teorema do valor medio
por matmatco » Seg Nov 14, 2011 10:18
- 3 Respostas
- 2671 Exibições
- Última mensagem por LuizAquino

Seg Nov 14, 2011 20:46
Cálculo: Limites, Derivadas e Integrais
-
- Teorema do valor médio
por crsjcarlos » Qua Mai 01, 2013 12:09
- 1 Respostas
- 1986 Exibições
- Última mensagem por e8group

Qua Mai 01, 2013 14:07
Cálculo: Limites, Derivadas e Integrais
-
- [teorema do valor médio]
por Ge_dutra » Seg Jun 17, 2013 00:12
- 0 Respostas
- 1214 Exibições
- Última mensagem por Ge_dutra

Seg Jun 17, 2013 00:12
Cálculo: Limites, Derivadas e Integrais
-
- Aplicações de Derivada [Teorema do valor médio]
por xanda2012 » Sáb Jun 16, 2012 16:22
- 2 Respostas
- 2252 Exibições
- Última mensagem por xanda2012

Sáb Jun 16, 2012 17:43
Cálculo: Limites, Derivadas e Integrais
-
- [Teorema do Valor Médio] Demonstrar desigualdade
por Brunorp » Qua Abr 06, 2016 23:07
- 1 Respostas
- 1363 Exibições
- Última mensagem por adauto martins

Sex Abr 08, 2016 11:16
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.