• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITES] Limite através da definição

[LIMITES] Limite através da definição

Mensagempor Henrique Bueno » Sex Abr 19, 2013 00:25

Supondo que o lim f(x)=L quando x->p prove que existem r>0 e M>0 tais que
0<|x-p|<r => -M <=f(x)<=M

primeiramente ao analisar as afirmações, a primeira parte (0<|x-p|<r) é idêntica a definição de limite, somente empregou um r onde normalmente usamos um delta.
Usando que |f(x)-L|< E (onde E é aquele epslon eu acho, aquela letra grega)
-E < f(x)-L < E
-E -L < f(x) < E -L

embora eu tenha conseguido fazer uma sentença semelhante a -M <=f(x)<=M, não consigo definir um M através dela. Além disso acredito que era necessário relacionar o M e o r para que o limite fosse provado. Por favor, me ajudem !
Henrique Bueno
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Mar 02, 2011 19:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [LIMITES] Limite através da definição

Mensagempor e8group » Sex Abr 19, 2013 02:00

Temos que \lim_{x\to p} f(x) = L \iff  \begin{cases} \forall \epsilon > 0, \exists \delta > 0 \mid \forall x\in D_f \\ 0<|x-p|<\delta \implies  |f(x)-L|<\epsilon \end{cases} .

Como |f(x)-L| > |f(x)| - |L| ,

|f(x)-L| < \epsilon  \implies  |f(x)| < |L| + \epsilon .


Tente concluir a parti daí .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59