por Henrique Bueno » Sex Abr 19, 2013 00:25
Supondo que o lim f(x)=L quando x->p prove que existem r>0 e M>0 tais que
0<|x-p|<r => -M <=f(x)<=M
primeiramente ao analisar as afirmações, a primeira parte (0<|x-p|<r) é idêntica a definição de limite, somente empregou um r onde normalmente usamos um delta.
Usando que |f(x)-L|< E (onde E é aquele epslon eu acho, aquela letra grega)
-E < f(x)-L < E
-E -L < f(x) < E -L
embora eu tenha conseguido fazer uma sentença semelhante a -M <=f(x)<=M, não consigo definir um M através dela. Além disso acredito que era necessário relacionar o M e o r para que o limite fosse provado. Por favor, me ajudem !
-
Henrique Bueno
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Qua Mar 02, 2011 19:13
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por e8group » Sex Abr 19, 2013 02:00
Temos que

.
Como

,

.
Tente concluir a parti daí .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limites] duas variáveis. Prova através da definição formal
por marcosmuscul » Sáb Jan 25, 2014 17:59
- 2 Respostas
- 5965 Exibições
- Última mensagem por marcosmuscul

Ter Fev 04, 2014 10:03
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Prove a partir da definição de limite
por Ruan Petterson » Qui Nov 28, 2013 23:13
- 6 Respostas
- 3421 Exibições
- Última mensagem por e8group

Sex Nov 29, 2013 10:05
Cálculo: Limites, Derivadas e Integrais
-
- DERIVADA - cálculo através da definição
por emsbp » Sáb Abr 28, 2012 18:20
- 4 Respostas
- 1699 Exibições
- Última mensagem por emsbp

Qua Mai 02, 2012 06:41
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo de limite através da série de MacLaurin
por Camargo » Qui Nov 25, 2010 15:13
- 0 Respostas
- 1829 Exibições
- Última mensagem por Camargo

Qui Nov 25, 2010 15:13
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Limites pela definiçao
por JoaoLuiz07 » Qui Ago 27, 2015 16:55
- 1 Respostas
- 1669 Exibições
- Última mensagem por adauto martins

Sáb Ago 29, 2015 20:52
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.