• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITES] Limite através da definição

[LIMITES] Limite através da definição

Mensagempor Henrique Bueno » Sex Abr 19, 2013 00:25

Supondo que o lim f(x)=L quando x->p prove que existem r>0 e M>0 tais que
0<|x-p|<r => -M <=f(x)<=M

primeiramente ao analisar as afirmações, a primeira parte (0<|x-p|<r) é idêntica a definição de limite, somente empregou um r onde normalmente usamos um delta.
Usando que |f(x)-L|< E (onde E é aquele epslon eu acho, aquela letra grega)
-E < f(x)-L < E
-E -L < f(x) < E -L

embora eu tenha conseguido fazer uma sentença semelhante a -M <=f(x)<=M, não consigo definir um M através dela. Além disso acredito que era necessário relacionar o M e o r para que o limite fosse provado. Por favor, me ajudem !
Henrique Bueno
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Mar 02, 2011 19:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [LIMITES] Limite através da definição

Mensagempor e8group » Sex Abr 19, 2013 02:00

Temos que \lim_{x\to p} f(x) = L \iff  \begin{cases} \forall \epsilon > 0, \exists \delta > 0 \mid \forall x\in D_f \\ 0<|x-p|<\delta \implies  |f(x)-L|<\epsilon \end{cases} .

Como |f(x)-L| > |f(x)| - |L| ,

|f(x)-L| < \epsilon  \implies  |f(x)| < |L| + \epsilon .


Tente concluir a parti daí .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)