• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Convergência de série

Convergência de série

Mensagempor ThallesAlencar » Seg Abr 08, 2013 14:47

gostaria de saber se a série \sum_{0}^{infinity} sin (n\pi\frac{1}{2})n\frac{1}{e^n} converge ou diverge e qual foi o método usado para saber.
ThallesAlencar
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Abr 08, 2013 14:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Convergência de série

Mensagempor young_jedi » Seg Abr 08, 2013 20:30

primeiro pelo teste da comparação podemos perceber que

\sum_{n=0}^{\infty}\frac{sin\left(\frac{n\pi}{2}\right)n}{e^n}<\sum_{n=0}^{\infty}\frac{n}{e^n}

pois como seno varia de -1 ate 1 então cada termo da primeira serie e menor ou igual a cada termo da segunda serie

portanto temos que se a segunda serie converge a primeira tambem converge

analisando a segunda pelo teste da razão temos

\lim_{n\to\infty}\frac{\frac{n+1}{e^{n+1}}}{\frac{n}{e^n}}=\frac{n+1}{e.e^n.n}

\lim_{n\to\infty}\frac{n+1}{n.e}

\lim_{n\to\infty}=\frac{n}{ne}+\frac{1}{ne}

\lim_{n\to\infty}=\frac{1}{e}+\frac{1}{ne}=\frac{1}{e}

como 1/e é menor que 1 então a serie converge
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Convergência de série

Mensagempor ThallesAlencar » Ter Abr 09, 2013 09:01

Obrigado; ótima resolução!
ThallesAlencar
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Abr 08, 2013 14:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}