por netochaves » Sex Abr 05, 2013 14:32
Uma caixa d’agua no formato de um cilindro circular reto de raio r e altura h será construída em cima de um prédio onde o teto tem formato de um cone de revolução com raio R e altura H, conforme a figura abaixo.
A figura é um cilindro circular reto inscrito num cone reto. Onde o r e o h são o raio e a altura do cilindro e o R e H o raio e altura do cone.
Encontrar as dimensões de r (em função de R e H) que maximiza a área total da superfície da caixa d’ água (inclusive a base inferior).
Questões:
Tem como solucionar a situação sem a aplicação das derivadas?
Qual as dimensões de r (em função de R e H) que maximiza a área total da superfície da caixa d’ água (inclusive a base inferior)?
Qual a solução gráfica para a questao?
-
netochaves
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Qui Abr 04, 2013 17:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Cilindro circular reto inscrito num cone reto
por netochaves » Qui Abr 04, 2013 18:04
- 10 Respostas
- 7036 Exibições
- Última mensagem por netochaves

Qua Mai 01, 2013 16:31
Cálculo: Limites, Derivadas e Integrais
-
- Cilindro Circular Reto Inscrito em Cone
por OtavioBonassi » Ter Jul 12, 2011 18:29
- 1 Respostas
- 4168 Exibições
- Última mensagem por Adriano Tavares

Dom Jan 01, 2012 17:51
Geometria Espacial
-
- [Volume de um cilindro circular reto]
por liahxs » Dom Ago 13, 2017 23:34
- 0 Respostas
- 4821 Exibições
- Última mensagem por liahxs

Dom Ago 13, 2017 23:34
Geometria Espacial
-
- Volume - Cone circular reto
por deividchou » Ter Ago 18, 2015 15:57
- 2 Respostas
- 4951 Exibições
- Última mensagem por deividchou

Qua Ago 19, 2015 10:31
Geometria Espacial
-
- Dimensões de um cilindro circular
por leticiapires52 » Qua Nov 25, 2015 16:01
- 1 Respostas
- 4298 Exibições
- Última mensagem por adauto martins

Qui Nov 26, 2015 11:18
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.