• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[INTEGRAL] frações parciais

[INTEGRAL] frações parciais

Mensagempor FERNANDA_03 » Dom Mar 31, 2013 13:59

Olá, tentei resolver a seguinte integral pelo método de frações parciais, mas não deu certo. Alguém poderia me dar uma dica de como desenvolvê-la? Grata.
\int \frac{1}{x^2+5}dx
FERNANDA_03
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Jan 05, 2013 22:02
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [INTEGRAL] frações parciais

Mensagempor e8group » Dom Mar 31, 2013 15:41

Boa tarde .

\int \frac{1}{x^2 + 5} dx  =  \frac{1}{5} \cdot  \int \frac{1}{\left( \dfrac{x}{\sqrt{5}}\right )^2 + 1} dx .

Deixando \dfrac{x}{\sqrt{5}} = u ,temos :

\frac{1}{5} \cdot  \int \frac{1}{\left( \dfrac{x}{\sqrt{5}}\right )^2 + 1} dx  = \frac{\sqrt{5}}{5} \cdot  \int \frac{1}{ u^2 + 1} du  = \frac{\sqrt{5}}{5} \cdot arctan(u) + c = \frac{\sqrt{5}}{5} \cdot arctan(\dfrac{x}{\sqrt{5}}) + c

Se surgir dúvidas retorne .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [INTEGRAL] frações parciais

Mensagempor FERNANDA_03 » Dom Mar 31, 2013 16:38

Muito obrigada!
FERNANDA_03
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Jan 05, 2013 22:02
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.