por Douglas16 » Qui Mar 28, 2013 13:35
Calcule o limite da seguinte função quando

.

(onde

é uma constante positiva.)
(Considere 3 casos:

é menor ou igual a 2,

é igual a 3,

é maior ou igual a 4.)
Sei que para resolver tenho que eliminar o caso do denominador se aproximar de zero, mas como eliminar um fator em

quando o numerador está em função da tangente e o seno de x?
Tipo o resultado é um valor finito, pois o numerador e o denominador representam a razão

, quando

e por isso mesmo o numerador e o denominador podem possuir fatores comuns, usando também o seguinte limite:

.
-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
por e8group » Qui Mar 28, 2013 15:00
Note que :

.
E ainda ,se

, ou seja ,se

podemos multiplicar

por

obtendo uma outra função,

.
Quando

temos que

e

;logo

.
Assim ,

.
OBS.:

, mas ambas funções possuem o mesmo limite quando
Tente concluir .
Editado ...
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Douglas16 » Sex Mar 29, 2013 11:10
Mas ainda continua com a indeterminação pois

e

, ou seja

, posso também usar o fato de que o limite de

quando x tende a zero ser igual a 1, para fatorar a expressão, mas resulta em:

Que no caso quando:
1. n é menor ou igual a 2, o limite é igual a zero.
2. n é igual a 3, o limite é igual a

.
3. n é maior ou igual a 4, o limite é o igual a zero.
Seria isso a solução?
-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
por e8group » Sex Mar 29, 2013 12:00
Em todos os casos exceto o 3 sua resposta está certa .Observe que no caso 3 , para todo

sempre

.Para concluir ,estude ambos limites laterais .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Douglas16 » Sex Mar 29, 2013 12:08
Aqui foi um descuido, o limite no caso 3 é o infinito positivo pelo lado esquerdo e infinito negativo pelo lado direito, ou seja não existe limite.
-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Onde esta o meu erro
por VERTAO » Dom Mar 13, 2011 20:37
- 1 Respostas
- 2546 Exibições
- Última mensagem por Rogerio Murcila

Qua Mar 16, 2011 23:11
Matemática Financeira
-
- [Integral por partes] onde está o erro???
por Fabio Wanderley » Seg Mai 28, 2012 20:21
- 2 Respostas
- 2320 Exibições
- Última mensagem por Fabio Wanderley

Ter Mai 29, 2012 13:42
Cálculo: Limites, Derivadas e Integrais
-
- Expressões, onde esta o erro que eu não achei
por teilom » Sáb Ago 11, 2012 20:37
- 2 Respostas
- 3218 Exibições
- Última mensagem por teilom

Dom Ago 12, 2012 12:32
Equações
-
- [Estudo do sinal] dessa função. Onde está o erro?
por marcosmuscul » Ter Mar 19, 2013 15:56
- 3 Respostas
- 2700 Exibições
- Última mensagem por marcosmuscul

Sex Mar 22, 2013 00:14
Álgebra Elementar
-
- [Integral Definida] Ex. do tipo "onde está o erro?"
por Fabio Wanderley » Seg Out 22, 2012 23:15
- 2 Respostas
- 2685 Exibições
- Última mensagem por Fabio Wanderley

Ter Out 23, 2012 00:24
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.