• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral por substituição trigonométrica.

Integral por substituição trigonométrica.

Mensagempor ClaudioSP » Qui Out 08, 2009 12:25

Bom dia.

Estou com algumas duvida nessa integral por substituição trigonométrica.

\int\sqrt{\frac{4}{{x}^{4}-{x}^{2}}}dx

Minha duvida é a seguinte, o caso que irei usar, é o caso 1 \sqrt{{a}^{2}-{b}^{2}*{u}^{2}} ou o caso 2 \sqrt{{b}^{2}*{u}^{2}-{a}^{2}}.

Escolhido um dos casos, quem chamarei de a, b e u?

Agradeço a ajuda.

Claudio M. Ribeiro
ClaudioSP
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Out 07, 2009 17:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Prod Mecanica
Andamento: cursando

Re: Integral por substituição trigonométrica.

Mensagempor ClaudioSP » Qui Out 08, 2009 14:25

Eu de novo, cheguei a isso será que está correto isso?
\int\frac{\sqrt{4}}{\sqrt{{x}^{4}-{x}^{2}}}dx = \int\frac{\sqrt{4}}{\sqrt{{x}^{2}*\left({x}^{2}-1 \right)}}dx

\int\frac{\sqrt{4}}{\sqrt{{x}^{2}}*\sqrt{{x}^{2}-1}}dx = \int\frac{2}{x*\sqrt{{x}^{2}-1}}dx

chegando a essa integra,l resolvi assim:

{a}^{2}= {1}^{2} \Leftrightarrow a =1

{b}^{2}= {1}^{2} \Leftrightarrow b =1

{u}^{2}= {x}^{2} \Leftrightarrow x =u

u = \frac{a}{b}* sec\theta \Leftrightarrow u = x = sec\theta

dx = (sec\theta)' = sec\theta * tg\theta d\theta

x = sec\theta

\sqrt{{x}^{2}-1}= a*tg\theta=tg\theta

Montando a nova integral:

\int \frac{2}{sec\theta*tg\theta}*sec\theta*tg\theta d\theta = 2\int \frac{sec\theta*tg\theta}{sec\theta*tg\theta} d\theta

Isso estaria correto?
ClaudioSP
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Out 07, 2009 17:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Prod Mecanica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)