• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral Definida] Denominador c/ fator x e raiz de binômio

[Integral Definida] Denominador c/ fator x e raiz de binômio

Mensagempor Matheus Lacombe O » Dom Mar 17, 2013 17:35

- Mais uma, de tantas outras intermináveis listas de exercícios e eis que surge-me uma dúvida comum entre esta a a lista de exercícios anterior. Simplesmente não consigo resolver o exercício, sempre que me deparo com o padrão descrito a seguir:

\int_{a}^{b}\frac{dx}{x.\sqrt[]{{x}^{2}-b}}

- Bom, segue a seguir como eu tentei resolver um problema prático que cai neste padrão - sem sucesso:

Cálculo 8ºed, HOWARD Anton, p.407:

23) \int_{\sqrt[]{2}}^{2}\frac{dx}{x.\sqrt[]{{x}^{2}-1}}

- Realizando a substituição:

u=\sqrt[]{{x}^{2}-1}

u={({x}^{2}-1)}^{\frac{1}{2}}

- Encontrando 'x' em termos de 'u':

u=\sqrt[]{{x}^{2}-1}

{u}^{2}={x}^{2}-1

{u}^{2}+1={x}^{2}

x=\sqrt[]{{u}^{2}+1}

- Ajustando 'du':

\frac{du}{dx}=\frac{1}{2}.{({x}^{2}-1)}^{-\frac{1}{2}}

\frac{du}{dx}=\frac{1}{2}.\frac{1}{{({x}^{2}-1)}^{\frac{1}{2}}}

\frac{du}{dx}=\frac{1}{2.{({x}^{2}-1)}^{\frac{1}{2}}}

\frac{du}{dx}=\frac{1}{2.\sqrt[]{{x}^{2}-1}}

du=\frac{dx}{2.\sqrt[]{{x}^{2}-1}}

dx=du.2.\sqrt[]{{x}^{2}-1}

dx=du.2u

- Ajustando limite inferior:

para: x=\sqrt[]{2}

u=\sqrt[]{{(\sqrt[]{2})}^{2}-1}

u=\sqrt[]{2-1}

u=\sqrt[]{1}

u=1

- Ajustando limite superior:

para: x=2

u=\sqrt[]{{2}^{2}-1}

u=\sqrt[]{4-1}

u=\sqrt[]{3}

- Conclui-se então, que (considerando 'x' em termos de 'u'):

\int_{\sqrt[]{2}}^{2}\frac{dx}{x.\sqrt[]{{x}^{2}-1}}=\int_{1}^{\sqrt[]{3}}\frac{du.2u}{\sqrt[]{{u}^{2}+1}.u}

2.\int_{1}^{\sqrt[]{3}}\frac{du}{\sqrt[]{{u}^{2}+1}}

- Sabendo que:

\int_{}^{}\frac{dx}{\sqrt[]{{a}^{2}-{x}^{2}}}=arcsen\left(\frac{x}{a}\right)

- Comparamos essa integral tabelada com a integral do problema, tendo que:

{a}^{2}={u}^{2}

\sqrt[]{{a}^{2}}=\sqrt[]{{u}^{2}}

a=u;

{x}^{2}=1

x={1}^{2}

x=1;

- Então:

2.\int_{1}^{\sqrt[]{3}}\frac{du}{\sqrt[]{{u}^{2}+1}}=\left[2.arcsen\left(\frac{1}{u} \right) {{\right]}_{1}}^{\sqrt[]{3}}

- Resolvendo a integral entre este intervalo:

\left[2.arcsen\left(\frac{1}{\sqrt[]{3}} \right)\right]-\left[2.arcsen\left(\frac{1}{1} \right) \right]

\left(2.35,26 \right)-\left(2.90 \right)

70,52-180

109,48

- Porém, a resposta do gabarito é: \frac{\pi}{12}

- E agora, gente? Quem poderá me socorrer?


Grato, desde já.
Att. Matheus L. Oliveira
Matheus Lacombe O
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Sex Jun 03, 2011 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecânica
Andamento: cursando

Re: [Integral Definida] Denominador c/ fator x e raiz de bin

Mensagempor Matheus Lacombe O » Seg Mar 18, 2013 17:29

Alguém?
Matheus Lacombe O
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Sex Jun 03, 2011 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecânica
Andamento: cursando

Re: [Integral Definida] Denominador c/ fator x e raiz de bin

Mensagempor Matheus Lacombe O » Qua Mar 20, 2013 13:25

Sério gente, por favor, alguem da uma força ai. La na sala tava todo mundo dizendo que essa questão era impossível. A professora até anulou da lista. Mas eu queria saber.
Matheus Lacombe O
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Sex Jun 03, 2011 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecânica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.