• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite de uma função trigonométrica

Limite de uma função trigonométrica

Mensagempor Douglas16 » Sáb Mar 16, 2013 21:52

\lim_{x\rightarrow\frac{\Pi}{2}} \left(\Pi-2x \right)tan\left(x \right)
Como \left(\Pi-2x \right) e cos x tendem a zero quando x\rightarrow\frac{\Pi}{2}, então o limite existe.
Agora só não sei se devo anular \left(\Pi-2x \right) com cos x, para eliminar a indeterminação ou devo procurar uma identidade para resolver o limite.
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Limite de uma função trigonométrica

Mensagempor e8group » Sáb Mar 16, 2013 23:39

Note que , (\pi -2x)tan(x) = 2(\frac{\pi}{2} -x)tan(x) = 2(\frac{\pi}{2} -x)\frac{sin(x)}{cos(x)} .


De cos(x) = sin(\frac{\pi}{2} -x) segue ,
(\pi -2x)tan(x) = 2(\frac{\pi}{2} -x)\frac{sin(x)}{sin(\frac{\pi}{2} -x)} = 2 \cdot \frac{sin(x)}{\dfrac{sin(\dfrac{\pi}{2} -x)}{\dfrac{\pi}{2} -x}} .



Consegue concluir ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite de uma função trigonométrica

Mensagempor Douglas16 » Dom Mar 17, 2013 00:07

Eu tinha conseguido resolver antes de verificar se alguém tinha respondido, mas entendi sua resolução, e considerei mais simples que a minha resolução, bastava apenas lembrar da propriedade de que cosx=sin\left(\frac{\Pi}{2}-x \right).
Tipo, eu me impressiono comigo mesmo pela falta de capacidade de lembrar de coisas óbvias, vou tentar me concertar e vê o que está acontecendo comigo.
O que você faz para encontrar a resolução tão facilmente, tipo, você não esquece dessas propriedades?
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Limite de uma função trigonométrica

Mensagempor e8group » Dom Mar 17, 2013 00:34

Apenas deduzo ,não consigo lembrar muitas coisas .Do ponto de vista geométrico é fácil ver que cos(x) = sin(\pi/2 - x) .De fato , sin(a+b) = sin(a)cos(b) + cos (a) sin(b) confirma isto ,onde a = \pi/2 e b = -x.
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59