• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite de uma função trigonométrica

Limite de uma função trigonométrica

Mensagempor Douglas16 » Sáb Mar 16, 2013 21:52

\lim_{x\rightarrow\frac{\Pi}{2}} \left(\Pi-2x \right)tan\left(x \right)
Como \left(\Pi-2x \right) e cos x tendem a zero quando x\rightarrow\frac{\Pi}{2}, então o limite existe.
Agora só não sei se devo anular \left(\Pi-2x \right) com cos x, para eliminar a indeterminação ou devo procurar uma identidade para resolver o limite.
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Limite de uma função trigonométrica

Mensagempor e8group » Sáb Mar 16, 2013 23:39

Note que , (\pi -2x)tan(x) = 2(\frac{\pi}{2} -x)tan(x) = 2(\frac{\pi}{2} -x)\frac{sin(x)}{cos(x)} .


De cos(x) = sin(\frac{\pi}{2} -x) segue ,
(\pi -2x)tan(x) = 2(\frac{\pi}{2} -x)\frac{sin(x)}{sin(\frac{\pi}{2} -x)} = 2 \cdot \frac{sin(x)}{\dfrac{sin(\dfrac{\pi}{2} -x)}{\dfrac{\pi}{2} -x}} .



Consegue concluir ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite de uma função trigonométrica

Mensagempor Douglas16 » Dom Mar 17, 2013 00:07

Eu tinha conseguido resolver antes de verificar se alguém tinha respondido, mas entendi sua resolução, e considerei mais simples que a minha resolução, bastava apenas lembrar da propriedade de que cosx=sin\left(\frac{\Pi}{2}-x \right).
Tipo, eu me impressiono comigo mesmo pela falta de capacidade de lembrar de coisas óbvias, vou tentar me concertar e vê o que está acontecendo comigo.
O que você faz para encontrar a resolução tão facilmente, tipo, você não esquece dessas propriedades?
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Limite de uma função trigonométrica

Mensagempor e8group » Dom Mar 17, 2013 00:34

Apenas deduzo ,não consigo lembrar muitas coisas .Do ponto de vista geométrico é fácil ver que cos(x) = sin(\pi/2 - x) .De fato , sin(a+b) = sin(a)cos(b) + cos (a) sin(b) confirma isto ,onde a = \pi/2 e b = -x.
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.