por TheKyabu » Qua Mar 13, 2013 22:41
Como resolvo essa equaçao

não estou conseguindo por na forma de y' +p(x)y=f(x)
me ajudem por favor
-
TheKyabu
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Sex Out 19, 2012 19:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por young_jedi » Qua Mar 13, 2013 23:19
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por TheKyabu » Qua Mar 13, 2013 23:23
Aff...eu tentando fazer n coisas,meu deus...q vacilo, muito obrigado
-
TheKyabu
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Sex Out 19, 2012 19:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [EDO] Variáveis Separáveis
por leticiaeverson » Qua Out 03, 2018 22:35
- 1 Respostas
- 2612 Exibições
- Última mensagem por adauto martins

Sáb Abr 25, 2020 17:43
Cálculo: Limites, Derivadas e Integrais
-
- Equações Diferenciais Separáveis
por Claudin » Dom Mai 26, 2013 11:17
- 1 Respostas
- 1900 Exibições
- Última mensagem por Man Utd

Dom Jun 15, 2014 23:41
Equações
-
- EDO Método das equações separáveis
por Sergio_66 » Sáb Mar 26, 2016 10:39
- 1 Respostas
- 1761 Exibições
- Última mensagem por nakagumahissao

Sáb Abr 23, 2016 23:57
Equações
-
- [Equações Diferenciais] Variáveis Separaveis
por Bruhh » Qua Ago 24, 2011 15:37
- 2 Respostas
- 2246 Exibições
- Última mensagem por LuizAquino

Qua Ago 24, 2011 17:39
Cálculo: Limites, Derivadas e Integrais
-
- [Varáveis Separáveis?] Ajuda em exercício
por manoelcarlos » Ter Mar 11, 2014 23:45
- 6 Respostas
- 2829 Exibições
- Última mensagem por manoelcarlos

Sáb Mar 15, 2014 17:19
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.