• Anúncio Global
    Respostas
    Exibições
    Última mensagem

limite

limite

Mensagempor jeffinps » Ter Mar 12, 2013 11:59

\lim_{r\rightarrow1}\sqrt[]{\frac{8r+1}{r+3}}
jeffinps
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Fev 26, 2013 12:35
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando

Re: limite

Mensagempor marinalcd » Ter Mar 12, 2013 16:48

Ficou difícil de ver seu limite. Entendi assim: \lim_{r\rightarrow 1} \sqrt[]{\frac{8r +1}{r+3}}

Substituindo por 1, onde tem r, temos que:

\lim_{r\rightarrow 1} \sqrt[]{\frac{8r +1}{r+3}} = \sqrt[]{\frac{9}{4}} = \frac{3}{2}.

Bom, acho que é isso!!!
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: limite ta certo

Mensagempor jeffinps » Ter Mar 12, 2013 17:11

foi isso sim.. so n sabia direito como colocava la...
jeffinps
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Fev 26, 2013 12:35
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando

Re: limite certo

Mensagempor jeffinps » Ter Mar 12, 2013 17:12

grato!!!
jeffinps
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Fev 26, 2013 12:35
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.