por vinit » Ter Mar 12, 2013 12:26
-
vinit
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Ter Mar 12, 2013 12:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia civil
- Andamento: cursando
por Douglas16 » Ter Mar 12, 2013 14:40
Existe uma forma específica de determinar se um limite existe em função fracionária que é:
Em geral em uma função fracionária f(x)/g(x), se limite de f(x) é diferente de zero e limite de g(x) é igual a zero não existe um valor limite (finito).
Mas se limite de f(x) é igual a zero e limite de g(x) também é igual a zero então existe um valor limite (finito).
Então note que na função dada por você tanto o numerador quanto o denominador possuem valores diferentes de zero quando substituo o valor de r por infinito, mas também não dá um valor que se possa determinar com precisão, por isso divida cada termo do numerador e do denominador por x³, ou seja a variável de maior grau, perceba o que acontece com cada termo agora, quando x se aproxima do infinito, tipo: 1/x, por exemplo, se aproxima de zero, entende?, então considere como zero, e depois de considerar o que acontece com cada termo, você obterá um valor para o numerador e o denominador, então basta simplificar dividindo o numerador pelo denominador.
Se Deus quiser, posso passar mais exercícios especialmente para aprender sobre limites via skype, pois se for através de escrita fica muito pesado para mim.
Vai postando suas dúvidas...
-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- como resolvo isso
por weverton » Dom Jul 18, 2010 23:56
- 1 Respostas
- 1510 Exibições
- Última mensagem por MarceloFantini

Seg Jul 19, 2010 03:18
Estatística
-
- [Sequência] Como resolvo esse Limite
por locatelli » Sex Jan 25, 2013 12:10
- 1 Respostas
- 1801 Exibições
- Última mensagem por young_jedi

Sáb Jan 26, 2013 11:56
Sequências
-
- E agora? Dúvida em limites
por Cleyson007 » Sáb Jun 09, 2012 16:24
- 3 Respostas
- 2142 Exibições
- Última mensagem por MarceloFantini

Dom Jun 10, 2012 15:30
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo] Como estudar ?
por Pessoa Estranha » Sáb Nov 02, 2013 17:54
- 0 Respostas
- 2028 Exibições
- Última mensagem por Pessoa Estranha

Sáb Nov 02, 2013 17:54
Cálculo: Limites, Derivadas e Integrais
-
- Exercícios de Estatística. como estudar ou o que.
por RichardMath » Qui Jun 14, 2018 10:34
- 0 Respostas
- 12567 Exibições
- Última mensagem por RichardMath

Qui Jun 14, 2018 10:34
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.