• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Taxa de variação, URGENTE!!

Taxa de variação, URGENTE!!

Mensagempor manuoliveira » Qua Fev 27, 2013 18:55

Dois lados de um triângulo têm comprimentos a = 4cm e b = 3cm, mas estão crescendo a uma taxa de 1 cm/s. Se a área do triângulo permanece constante, a qual taxa está variando o ângulo alfa entre a e b quando alfa = pi/6.

Agradeço desde já quem puder ajudar!
manuoliveira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 61
Registrado em: Qui Abr 01, 2010 19:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando

Re: Taxa de variação, URGENTE!!

Mensagempor Russman » Qua Fev 27, 2013 20:15

Primeiramente, você deve estabelecer a relação entre a área do triângulo, seus lados conhecidos e o angulo entre eles. Existe a fórmula

S = \frac{1}{2}ab \sin (\alpha )

onde S é a área, a e b os lados conhecidos e \alpha o ângulo entre eles.

Diferenciando a fórmula com relação a t, obtemos

\frac{\mathrm{d} S}{\mathrm{d} t} = \frac{1}{2}\frac{\mathrm{d} }{\mathrm{d} t}\left ( ab\sin \left ( \alpha  \right ) \right ) = \frac{1}{2}\left [ \frac{\mathrm{d} (ab)}{\mathrm{d} t}\sin \left ( \alpha  \right )+\cos \left ( \alpha  \right ).\frac{\mathrm{d}\alpha  }{\mathrm{d} t}ab \right ].

Como a área é constante, temos \frac{\mathrm{d}S }{\mathrm{d} t} = 0. Isolando, então, a taxa de variação de \alpha aplicando a regra \frac{\mathrm{d} (ab)}{\mathrm{d} t} = a\frac{\mathrm{d} b}{\mathrm{d} t}+b\frac{\mathrm{d} a}{\mathrm{d} t} obtemos, finalmente

\frac{\mathrm{d} \alpha }{\mathrm{d} t} = -\tan \left ( \alpha  \right )\left [ \frac{1}{b}\frac{\mathrm{d} b}{\mathrm{d} t}+\frac{1}{a}\frac{\mathrm{d} a}{\mathrm{d} t} \right ]


Agora, substitua os valores dos lados, das taxas de crescimento e o valor do angulo que você obterá a taxa de variação desse angulo. (:
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Taxa de variação, URGENTE!!

Mensagempor manuoliveira » Qui Fev 28, 2013 09:04

Obrigada!!!
manuoliveira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 61
Registrado em: Qui Abr 01, 2010 19:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59