• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite]Limite de uma funçao de varias variaveis

[Limite]Limite de uma funçao de varias variaveis

Mensagempor TheKyabu » Seg Fev 04, 2013 22:01

Bom,ja tentei fatorar,fazer substituiçao do tipo y=mx para cair na regra dos dois caminhos,


\lim_{(x,y)\rightarrow(1,1)}\frac{x^2-2x+1}{x^2-y^2-2x+2y}



\lim_{(x,y,z)\rightarrow(0,0,0)}\frac{x^3+y+z^3}{x^4+y^2+z^3}

Me ajudem, por favor
Agradeço desde de ja,abraços
TheKyabu
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Out 19, 2012 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: [Limite]Limite de uma funçao de varias variaveis

Mensagempor young_jedi » Ter Fev 05, 2013 18:51

vamos primeiro fazer o limite atraves da curva

y=1

portanto

\lim_{(x,y)\to(1,1)}\frac{x^2-2x+1}{x^2-y^2-2x+2y}=\lim_{x\to1}\frac{x^2-2x+1}{x^2-2x+1}=1

e pelo caminho

(y-1)^2=x-1

\lim_{(x,y)\to(1,1)}\frac{x^2-2x+1}{x^2-y^2-2x+2y}=\lim_{(x,y)\to(1,1)}\frac{x^2-2x+1}{(x-1)^2-(y-1)^2}

\lim_{x\to1}\frac{(x-1)^2}{(x-1)^2-(x-1)}=\lim_{x\to1}\frac{x-1}{(x-1)-1}=0

portanto o limite não existe ja que para dois caminhos diferentes ele não resulta no mesmo valor

para o outro exemplo vamos tomar primeiro o caminho onde

x=0 e y=0

\lim_{(x,y,z)\to(0,0,0)}\frac{x^3+y+z^3}{x^4+y^2+z^3}=\lim_{z\to0}\frac{z^3}{z^3}=1

e

y=0 e z=0

\lim_{(x,y,z)\to(0,0,0)}\frac{x^3+y+z^3}{x^4+y^2+z^3}=\lim_{x\to0}\frac{x^3}{x^4}=\infty
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Limite]Limite de uma funçao de varias variaveis

Mensagempor TheKyabu » Ter Fev 05, 2013 19:13

Estou com dificuldades em limites,como devo interpretar esses exercicios,vlw pela ajuda
TheKyabu
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Out 19, 2012 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: [Limite]Limite de uma funçao de varias variaveis

Mensagempor young_jedi » Ter Fev 05, 2013 19:47

nestes casos voce deve verificar se existem dois caminhos distintos que levam o limite para valores diferentes sendo assim o limite não existe,

para encontrar esses dois caminhos não existe uma regra geral, tem que usar um pouco a imaginação, o importante é treinar varios exercicios que ai voce pega o jeito.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?