![\int_\frac{sin(2x)}{\sqrt[]{1+sin²(x)}} dx \int_\frac{sin(2x)}{\sqrt[]{1+sin²(x)}} dx](/latexrender/pictures/ad7395cf56accd4968f19cacaa48bb34.png)
Pessoal, essa integral não está sendo fácil pra mim.
Tentei chamar u=sin^2(x) , que me dá um du= 2sin(x)cos(x)dx = sin(2x) dx
então
![\int_ \frac{1}{\sqrt[]{1+u}} du \int_ \frac{1}{\sqrt[]{1+u}} du](/latexrender/pictures/cc64f31568167ed6b60e29242cfd5ca7.png)
![\int_ \frac{1}{\sqrt[]{v}} \int_ \frac{1}{\sqrt[]{v}}](/latexrender/pictures/91102fa1a218f7634d975cbb13d09156.png)
![\sqrt[]{1+u} \sqrt[]{1+u}](/latexrender/pictures/1d3b5e2855ba9a2048436e2e9d7b8329.png)
![\sqrt[]{1+ sin^2(x)} \sqrt[]{1+ sin^2(x)}](/latexrender/pictures/67ac9325de017b3259583671fea3f8a7.png)
porém, o resultado está assim: 2
![\frac{\sqrt[]{(3-cos(2x)}^1/2}{2} \frac{\sqrt[]{(3-cos(2x)}^1/2}{2}](/latexrender/pictures/6153d9596c8af2dd3d8e24756d0521c3.png)
Essa resposta está sem simplicação acredito eu, porém o que eu não entendo, é aquela substituição do ( 1+sin^2(x) ) que está dentro da raíz...
Já no Wolfram alpha, a resposta correta é:
![\sqrt[]{(6-2cos(2x)} \sqrt[]{(6-2cos(2x)}](/latexrender/pictures/fe592dce851a2a0e1abef12785aabbac.png)
Agradeço desde já!