por Aryane » Dom Jan 06, 2013 12:10
Olá!
Preciso resolver alguns exercícios e eu não conheço o método que eu tenho que usar.
Das equação abaixo, tenho que desenhar uma figura mostrando a região e um elemento de área retangular,
expressar a área da região como o limite de uma soma de Riemann
e achar o limite na parte (b), calculando uma integral definida pelo segundo teorema fundamental do cálculo.
1) y=4-x²; eixo x
2) y=2-x²; y=-x
3) y²=x-1; x=3
Alguém por favor pode me ajudar?
-
Aryane
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Dom Jan 06, 2013 11:56
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Graduação Engenharia Civil
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral]Soma de Riemann
por armando » Seg Ago 12, 2013 23:43
- 1 Respostas
- 1528 Exibições
- Última mensagem por Russman

Ter Ago 13, 2013 17:11
Cálculo: Limites, Derivadas e Integrais
-
- [Integral]Soma de Riemann
por armando » Seg Ago 12, 2013 23:48
- 0 Respostas
- 1078 Exibições
- Última mensagem por armando

Seg Ago 12, 2013 23:48
Cálculo: Limites, Derivadas e Integrais
-
- Integral e Soma Dupla de Riemann - Por Favor, Urgente!
por Bruhh » Seg Mai 09, 2011 20:17
- 5 Respostas
- 3498 Exibições
- Última mensagem por Bruhh

Ter Mai 10, 2011 19:33
Cálculo: Limites, Derivadas e Integrais
-
- [Integral de Riemann]
por Thyago Quimica » Qua Mai 29, 2013 15:47
- 3 Respostas
- 2262 Exibições
- Última mensagem por Man Utd

Sáb Jun 08, 2013 18:08
Cálculo: Limites, Derivadas e Integrais
-
- Integral da soma/Soma das Integrais.
por Sobreira » Ter Abr 30, 2013 17:41
- 0 Respostas
- 2098 Exibições
- Última mensagem por Sobreira

Ter Abr 30, 2013 17:41
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.