por manuel_pato1 » Seg Dez 31, 2012 15:17

bom, chamei de u=e^x , logo, du= e^xdx
que após alguns ajustes, me resultou em :

só que após isso eu não consigo resolver...
eu teria que colocar tudo em função de senos e cossenos?
eu tentei assim, porém me resultou numa integral assim:

aí chamei v=sin(u) , logo dv= cos(u)du
mas aí ficou:

mas a integral da cossec² (u) é -cotg(u) , o que não bate com a resposta do livro, que é -cossec(e^x) + c
-
manuel_pato1
- Usuário Dedicado

-
- Mensagens: 33
- Registrado em: Ter Set 18, 2012 22:18
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por DanielFerreira » Seg Dez 31, 2012 15:57
Manuel,
boa tarde!
O equívoco está em sua conclusão, veja:
![\\ \int \frac{1}{v^2} \, dv = \\\\\\ \int v^{- 2 } \, dv = \\\\\\ \left[ v^{- 1} \cdot - 1 \right] = \\\\ \left[ \frac{- 1}{v} \right] = \\\\\\ \left[ \frac{- 1}{sen \, u} \right] = \\\\\\ \left[ \frac{- 1}{sen \, \left(e^x \right)} \right] = \\\\\\ \boxed{ - cossec \, \left(e^x \right) + c} \\ \int \frac{1}{v^2} \, dv = \\\\\\ \int v^{- 2 } \, dv = \\\\\\ \left[ v^{- 1} \cdot - 1 \right] = \\\\ \left[ \frac{- 1}{v} \right] = \\\\\\ \left[ \frac{- 1}{sen \, u} \right] = \\\\\\ \left[ \frac{- 1}{sen \, \left(e^x \right)} \right] = \\\\\\ \boxed{ - cossec \, \left(e^x \right) + c}](/latexrender/pictures/66745e0cfef04c42432f810097a22ada.png)
Comente qualquer dúvida e tenha um bom ano!
Daniel F.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por manuel_pato1 » Qui Jan 03, 2013 14:15
Obrigado pela resposta Daniel, ajudou muito.
Eu não havia prestado atenção que estava aplicando uma regra que se aplica somente quando é 1/u e não quando a variável está elevada em uma potência diferente de 1
-
manuel_pato1
- Usuário Dedicado

-
- Mensagens: 33
- Registrado em: Ter Set 18, 2012 22:18
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral por substituição / Integral por partes
por Carlos28 » Seg Out 19, 2015 12:25
- 1 Respostas
- 3038 Exibições
- Última mensagem por nakagumahissao

Seg Out 19, 2015 23:26
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Substituição
por Aliocha Karamazov » Qui Fev 23, 2012 23:57
- 2 Respostas
- 2457 Exibições
- Última mensagem por MarceloFantini

Sex Fev 24, 2012 12:07
Cálculo: Limites, Derivadas e Integrais
-
- Integral (substituição)
por kika_sanches » Sex Mar 23, 2012 14:42
- 4 Respostas
- 3127 Exibições
- Última mensagem por kika_sanches

Sex Mar 23, 2012 15:35
Cálculo: Limites, Derivadas e Integrais
-
- integral por substituiçao (u.du)
por menino de ouro » Dom Nov 18, 2012 10:46
- 1 Respostas
- 1826 Exibições
- Última mensagem por young_jedi

Dom Nov 18, 2012 10:54
Cálculo: Limites, Derivadas e Integrais
-
- integral por substituiçao (u.du)
por menino de ouro » Seg Nov 19, 2012 16:23
- 7 Respostas
- 4602 Exibições
- Última mensagem por MarceloFantini

Ter Nov 20, 2012 21:45
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.