• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Otimização calculo 2 (retângulo inscrito em um triângulo)

Otimização calculo 2 (retângulo inscrito em um triângulo)

Mensagempor sadzinski » Qui Jan 03, 2013 08:39

Um retângulo é inscrito num triângulo retângulo de catetos medindo 9 cm e 12 cm.
Encontrar as dimensões do retângulo com maior área, supondo que sua posição é dada na
figura anexada.

Para a resolução deste exercício,é necessário encontrar uma relação entre o triangulo e o retângulo, mas eu não entendi como é encontrada esta relação.
Se puderem me ajudar, agradeço.
Anexos
triangulo.PNG
Figura
sadzinski
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Jan 01, 2013 16:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnologia em Fabricação Mecânica
Andamento: cursando

Re: Otimização calculo 2 (retângulo inscrito em um triângulo

Mensagempor young_jedi » Qui Jan 03, 2013 11:34

Voce tem que utilizar semelhança de triangulos

triangulo.PNG
triangulo.PNG (67.29 KiB) Exibido 9351 vezes


temos que os lado menor do triangulo amarelo é 9-y e outro lado é x

fazendo semelhança com o triangulo maior temos

\frac{9-y}{9}=\frac{x}{12}

isolando y

9-y=\frac{3x}{4}

y=9-\frac{3x}{4}

a area sera então

A=xy=x\left(9-\frac{3x}{4}\right)
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}