• Anúncio Global
    Respostas
    Exibições
    Última mensagem

primitivar funçoes racionais

primitivar funçoes racionais

Mensagempor rodrigonapoleao » Qui Dez 27, 2012 16:59

f(x)=\frac{{x}^{2}-5x+1}{{x}^{2}-5x+8} dividindo os polinomios fico com f(x)= 1 - \frac{7}{(x-{\frac{5}{2})}^{2}+\frac{7}{4}}
como faço para primitivar a função?
rodrigonapoleao
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Nov 19, 2012 14:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: primitivar funçoes racionais

Mensagempor e8group » Qui Dez 27, 2012 18:53

Basta fazer w= x- 5/2  \implies  dw = dx .

Assim , \int - \frac{7}{(x-5/2)^2 + 7/4} dx = - 7 \cdot \int \frac{dw}{w^2+7/4}= -4 \int \frac{dw}{\frac{4w^2}{7}+1} = -4 \int\frac{dw}{\left( \frac{2w}{\sqrt{7}}\right )^2+1} .

Agora deixando \frac{2w}{\sqrt{7}} por k ,vamos ter dk = \frac{2}{\sqrt{7}} dw .

Prossegue-se que , -4 \int\frac{dw}{\left( \frac{2w}{\sqrt{7}}\right )^2+1} =   - 7 \cdot \int \frac{dw}{w^2+7/4}= -4 \int \frac{dw}{\frac{4w^2}{7}+1} = -4 \int\frac{dw}{\left( \frac{2w}{\sqrt{7}}\right )^2+1} \\ \\ 

-4 \int\frac{dw}{\left( \frac{2w}{\sqrt{7}}\right )^2+1} =  -4 \int\frac{\frac{\sqrt{7}}{2}}{k^2+1}dk = -2\sqrt{7}\int \frac{dk}{k^2+1} =  -2\sqrt{7} arctan(k) + c  =   -2\sqrt{7} arctan\left(\frac{2w}{\sqrt{7}} \right )+c =   -2\sqrt{7} arctan\left(\frac{2\left[\frac{2x-5}{2} \right ]}{\sqrt{7}} \right )+c =   - 2\sqrt{7} arctan\left(\frac{2x-5}{\sqrt{7}} \right )+c
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: