• Anúncio Global
    Respostas
    Exibições
    Última mensagem

primitivar funçoes racionais

primitivar funçoes racionais

Mensagempor rodrigonapoleao » Qui Dez 27, 2012 16:59

f(x)=\frac{{x}^{2}-5x+1}{{x}^{2}-5x+8} dividindo os polinomios fico com f(x)= 1 - \frac{7}{(x-{\frac{5}{2})}^{2}+\frac{7}{4}}
como faço para primitivar a função?
rodrigonapoleao
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Nov 19, 2012 14:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: primitivar funçoes racionais

Mensagempor e8group » Qui Dez 27, 2012 18:53

Basta fazer w= x- 5/2  \implies  dw = dx .

Assim , \int - \frac{7}{(x-5/2)^2 + 7/4} dx = - 7 \cdot \int \frac{dw}{w^2+7/4}= -4 \int \frac{dw}{\frac{4w^2}{7}+1} = -4 \int\frac{dw}{\left( \frac{2w}{\sqrt{7}}\right )^2+1} .

Agora deixando \frac{2w}{\sqrt{7}} por k ,vamos ter dk = \frac{2}{\sqrt{7}} dw .

Prossegue-se que , -4 \int\frac{dw}{\left( \frac{2w}{\sqrt{7}}\right )^2+1} =   - 7 \cdot \int \frac{dw}{w^2+7/4}= -4 \int \frac{dw}{\frac{4w^2}{7}+1} = -4 \int\frac{dw}{\left( \frac{2w}{\sqrt{7}}\right )^2+1} \\ \\ 

-4 \int\frac{dw}{\left( \frac{2w}{\sqrt{7}}\right )^2+1} =  -4 \int\frac{\frac{\sqrt{7}}{2}}{k^2+1}dk = -2\sqrt{7}\int \frac{dk}{k^2+1} =  -2\sqrt{7} arctan(k) + c  =   -2\sqrt{7} arctan\left(\frac{2w}{\sqrt{7}} \right )+c =   -2\sqrt{7} arctan\left(\frac{2\left[\frac{2x-5}{2} \right ]}{\sqrt{7}} \right )+c =   - 2\sqrt{7} arctan\left(\frac{2x-5}{\sqrt{7}} \right )+c
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59