• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[CONVERGENCIA E SOMA] Somatorio com eq de 2o grau

[CONVERGENCIA E SOMA] Somatorio com eq de 2o grau

Mensagempor lucas7 » Seg Dez 24, 2012 18:18

Determine se a serie converge e, se convergir, encontre sua soma.

\sum_{k=1}^{\infty}1/(9k^2+3k-2)

Eu sei que converge, pois fazendo o teste de mao as parcelas vao diminuindo, a soma seria 1/10 + 1/40 + 1/81...
mas nao sei como descobrir a soma, parece ser uma serie telescopica.

Agradeco muito se alguem puder me ajudar e explicar.

ps:A soma deve dar 4/7!

Abracos e feliz natal!
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: [CONVERGENCIA E SOMA] Somatorio com eq de 2o grau

Mensagempor young_jedi » Seg Dez 24, 2012 20:47

pensei no seguinte

\sum_{k=1}^{\infty}\frac{1}{9k^2+3k-2}=\sum_{k=1}^{\infty}\frac{1}{9}.\frac{1}{k^2+\frac{k}{3}-\frac{2}{9}}

=\frac{1}{9}\sum_{k=1}^{\infty}\frac{1}{k^2+\frac{k}{3}-\frac{2}{9}}

=\frac{1}{9}\sum_{k=1}^{\infty}\frac{1}{(k-\frac{1}{3})(k+\frac{2}{3})}

=\frac{1}{9}\sum_{k=1}^{\infty}\frac{1}{k-\frac{1}{3}}-\frac{1}{k+\frac{2}{3}}

=\frac{1}{9}\left(\sum_{k=1}^{\infty}\frac{1}{k-\frac{1}{3}}-\sum_{k=1}^{\infty}\frac{1}{k+\frac{2}{3}}\right)

=\frac{1}{9}\left(\sum_{k=1}^{\infty}\frac{3}{3k-1}-\sum_{k=1}^{\infty}\frac{3}{3k+2}\right)

desenvolvendo as somas

\frac{1}{9}\left[\left(\frac{3}{2}+\frac{3}{5}+\frac{3}{8}+\frac{3}{11}\dots\right)-\left(\frac{3}{5}+\frac{3}{8}+\frac{3}{11}\dots\right)\right]

podemos ver que apartir do segundo termo do primeiro pareneteses ele se cancela com os termos do outro parenteses então sobra

\frac{1}{9}.\frac{3}{2}=\frac{1}{6}

não bateu com a respostas que voce deu, tenta dar uma conferida na minha resolução pra ver se tem um erro ou veja o gabarito se não é um erro no gabarito

e feliz natal!!
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [CONVERGENCIA E SOMA] Somatorio com eq de 2o grau

Mensagempor lucas7 » Ter Dez 25, 2012 01:26

O seu resultado esta certo! eu olhei o gabarito de uma outra questao por engano, desculpe. A resposta correta eh 1/6! Muitissimo obrigado! :-D :y:
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?