• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(integral) função exponencial

(integral) função exponencial

Mensagempor manuel_pato1 » Sex Dez 07, 2012 20:08

I = \int_{} \frac{e^{tg(x)}}{(1+x^2)} dx

Chamei de u = sin(x)/ cos(x) , logo, du/dx = 1/ cos²(x)

Daí eu meio que empaquei, pois não consigo fazer alguma relação trigonométrica com o '' 1 + x²'' do denominador

Alguém pode me ajudar? Abração
manuel_pato1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Ter Set 18, 2012 22:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: (integral) função exponencial

Mensagempor young_jedi » Sáb Dez 08, 2012 12:16

só uma duvida a exponecial é realmente de tangente ou de tg^{-1}x
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: (integral) função exponencial

Mensagempor Russman » Sáb Dez 08, 2012 13:36

Se fosse e^{tg^{-1}x} sairia muito mais fácil essa integral!
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: (integral) função exponencial

Mensagempor manuel_pato1 » Sáb Dez 08, 2012 13:56

Desculpem, o correto é: e^{atg(x)}

também achei estranho, essa integral faz parte de uma lista que meu professor passou, mas acho que está errada.

Pois é, se fosse elevado na -1, daria pra fazer mais tranquilamente.

a respota é: e^{arctan(x)}+ C
manuel_pato1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Ter Set 18, 2012 22:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: (integral) função exponencial

Mensagempor manuel_pato1 » Sáb Dez 08, 2012 13:58

acho que esse atg(x) ele quis dizer arctg(x)
manuel_pato1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Ter Set 18, 2012 22:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: (integral) função exponencial

Mensagempor Russman » Sáb Dez 08, 2012 14:04

Então, perfeito. Só pra esclarecer tg^{-1}(x) \equiv arctg(x), ok?.

Agora, faça u = arctg(x). Assim, \frac{\mathrm{d} u}{\mathrm{d} x} = \frac{\mathrm{d} }{\mathrm{d} x}arctg(x) = \frac{1}{1+x^2} \Rightarrow dx = (1+x^2)du. Portanto

\frac{e^{arctg(x)}}{(1+x^2)}dx = \frac{e^{u}}{1+x^2}.(1+x^2)du = e^u du

Agora integre trivialmente em u e faça a substituição contrária para expressar o resultado em termos de x.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: (integral) função exponencial

Mensagempor manuel_pato1 » Sáb Dez 08, 2012 15:02

Muito obrigado, Russman.
Consegui resolver, e bateu com o resultado.
Tô começando a matéria agora, então estou com umas dúvidas nessas integrais um pouco mais complicadinhas.
Abraço.
manuel_pato1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Ter Set 18, 2012 22:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59