por inkz » Ter Dez 04, 2012 01:15
Prove que a função
![\sqrt[2]{|xy|} \sqrt[2]{|xy|}](/latexrender/pictures/06b609e7ae9ebbaec32a24662e31400f.png)
é contínua ou que ela é descontínua.
alguma idéia galera?
-
inkz
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Ter Nov 20, 2012 01:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por MarceloFantini » Ter Dez 04, 2012 09:59
Em que ponto?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- DERIVADAS PARCIAIS e continuidade - função é diferenciável?
por inkz » Seg Nov 26, 2012 20:37
- 3 Respostas
- 5762 Exibições
- Última mensagem por MarceloFantini

Ter Nov 27, 2012 00:01
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas parciais
por john » Ter Fev 15, 2011 15:37
- 7 Respostas
- 6491 Exibições
- Última mensagem por john

Sáb Fev 19, 2011 16:24
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas parciais
por baianinha » Ter Jul 05, 2011 00:50
- 1 Respostas
- 2494 Exibições
- Última mensagem por MarceloFantini

Ter Jul 05, 2011 03:53
Cálculo: Limites, Derivadas e Integrais
-
- DERIVADAS PARCIAIS
por allyourwishes » Seg Jul 13, 2015 11:24
- 0 Respostas
- 2281 Exibições
- Última mensagem por allyourwishes

Seg Jul 13, 2015 11:24
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas parciais
por caarolsnp » Sex Out 13, 2017 11:40
- 0 Respostas
- 4167 Exibições
- Última mensagem por caarolsnp

Sex Out 13, 2017 11:40
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.