• Anúncio Global
    Respostas
    Exibições
    Última mensagem

DERIVADAS PARCIAIS, enunciado confuso

DERIVADAS PARCIAIS, enunciado confuso

Mensagempor inkz » Seg Nov 26, 2012 14:39

Seja fi: R --> R uma função de uma variável real, diferenciável e tal que fi ' (1) = 4. Seja g(x, y) = fi (x/y). Calcule:

dg/dx (1, 1)

dg/dy (1,1)


Alguém teria alguma idéia sobre esse exercício? Obrigado...
inkz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Ter Nov 20, 2012 01:07
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: DERIVADAS PARCIAIS, enunciado confuso

Mensagempor MarceloFantini » Seg Nov 26, 2012 19:16

Primeiro, sua notação está errada: o correto é \frac{\partial g}{\partial x} e \frac{\partial g}{\partial y}.

Agora, use a regra da cadeia:

\frac{\partial g}{\partial x} = \frac{df}{dt} \cdot \frac{\partial t}{\partial x}

e

\frac{\partial g}{\partial y} = \frac{df}{dt} \cdot \frac{\partial t}{\partial y},

onde t(x,y) = \frac{x}{y}. Aplicando no ponto (1,1) segue

\frac{\partial g}{\partial x} (1,1) = \frac{df}{dt} (1) \cdot \frac{\partial t}{\partial x} (1,1) = 4 \cdot \frac{1}{1} = 4

e

\frac{\partial g}{\partial y} (1,1) = \frac{df}{dt} (1) \cdot \frac{\partial t}{\partial y} (1,1) = 4 \cdot - \frac{1}{1^2} = -4.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.