• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[CURVAS] ângulo entre vetor tangente e vetor posição

[CURVAS] ângulo entre vetor tangente e vetor posição

Mensagempor inkz » Ter Nov 20, 2012 01:24

UMA PARTICULA MOVE-SE NO PLANO DE TAL FORMA QUE SUA POSIÇÃO NO INSTANTE t É DADA POR:

C(t) = (e^t cos t ,  e^t sen t)

DEMONSTRE QUE O VETOR TANGENTE À TRAJETÓRIA FAZ UM ÂNGULO CONSTANTE DE pi/4 COM O VETOR POSIÇÃO.

Minha tentativa:

Sei que o vetor tangente a trajetória é a derivada de C(t), então foi o que fiz, chegando em:

C'(t) = ( e^t (cost - sent),  e^t (sent + cost) )

Tenho então o vetor tangente a trajetória. Agora como provo que o angulo entre ele e o vetor posição é pi/4??

Desde já, agradeço!! :-D
inkz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Ter Nov 20, 2012 01:07
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: [CURVAS] ângulo entre vetor tangente e vetor posição

Mensagempor MarceloFantini » Ter Nov 20, 2012 01:41

Lembre-se que pelo produto escalar sabemos que

\cos \theta = \frac{u \cdot v}{|u| \cdot |v|},

ou seja, o ângulo entre dois vetores é igual ao seu produto escalar dividido pelo produto das normas.

Neste caso, temos que a norma de C(t) é e^t. Calcule

\sqrt{e^{2t} (\cos t - \sin t)^2 + e^{2t} (\sin t + \cos t)^2}

e

(e^t \cos t) \cdot (e^t (\cos t - \sin t)) + (e^t \sin t) \cdot (e^t (\sin t + \cos t) ),

que são a norma de C'(t) e o produto escalar C(t) \cdot C'(t) respectivamente, e substitua na equação.

Ao simplificar as contas o resultado deve ser \frac{1}{\sqrt{2}}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [CURVAS] ângulo entre vetor tangente e vetor posição

Mensagempor inkz » Ter Nov 20, 2012 01:55

MarceloFantini, primeiramente, gostaria de agradecer pela resposta.

Eu pensei exatamente em fazer isso, mas veja, todas as componentes de C e de C' estão em função de t, ou seja, não tem valor numérico.. como pode então essa simplificação terminar em um valor numérico?
inkz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Ter Nov 20, 2012 01:07
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: [CURVAS] ângulo entre vetor tangente e vetor posição

Mensagempor MarceloFantini » Ter Nov 20, 2012 02:10

Note que

\sqrt{e^{2t} (\cos t - \sin t)^2 + e^{2t} (\sin t + \cos t)^2}

= e^t \sqrt{ \cos^2 t - 2 \sin t \cos t + \sin^2 t + \sin^2 t + 2 \sin t \cos t + \cos^2 t }

= e^t \sqrt{2},

logo |C(t)| \cdot |C'(t)| = e^t \cdot e^t \cdot \sqrt{2}.

Na segunda conta temos

(e^t \cos t) \cdot (e^t (\cos t - \sin t)) + (e^t \sin t) \cdot (e^t (\sin t + \cos t) )

= e^{2t} (\cos^2 - \sin t \cos t + \sin^2 + \sin t \cos t )

= e^{2t} (1).

Portanto,

\cos \theta = \frac{C(t) \cdot C'(t)}{|C(t)| \cdot |C'(t)|} = \frac{e^{2t}}{e^{2t} \sqrt{2}} = \frac{1}{\sqrt{2}}.

Bastava você ter expandido e simplificado. É falta de hábito mesmo, não é tão difícil.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [CURVAS] ângulo entre vetor tangente e vetor posição

Mensagempor inkz » Ter Nov 20, 2012 02:13

de fato!!
vou terminar um exercício que estou fazendo aqui e refazer todos estes que postei aqui, em todas suas minúcias.

muito obrigado pela ajuda!! :y:
inkz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Ter Nov 20, 2012 01:07
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: [CURVAS] ângulo entre vetor tangente e vetor posição

Mensagempor LuannLuna » Qui Nov 29, 2012 15:05

Putz!... vlwzão!..
tava qbrando a cabeça nessa poha! aksdpoakpo =P
LuannLuna
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Nov 29, 2012 14:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.