• Anúncio Global
    Respostas
    Exibições
    Última mensagem

continuidade da função

continuidade da função

Mensagempor Sherminator » Sex Nov 16, 2012 13:13

Boa tarde, alguém me ajuda a resolver este problema?

Imagem
Sherminator
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Sáb Out 20, 2012 09:50
Formação Escolar: ENSINO MÉDIO
Área/Curso: Gestão de Empresas
Andamento: cursando

Re: continuidade da função

Mensagempor MarceloFantini » Sex Nov 16, 2012 13:38

Sherminator, use figuras apenas se estritamente necessário. Utilize LaTeX para redigir suas equações. Seu tópico não deverá ser respondido até estar de acordo com as regras.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: continuidade da função

Mensagempor Sherminator » Sex Nov 16, 2012 14:18

Peço desculpa, sou novo aqui, já estive a tentar mas acho super complicado, qualquer das formas vou tentar.
Sherminator
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Sáb Out 20, 2012 09:50
Formação Escolar: ENSINO MÉDIO
Área/Curso: Gestão de Empresas
Andamento: cursando

Re: continuidade da função

Mensagempor MarceloFantini » Sex Nov 16, 2012 14:21

Tente, arrumamos o código se necessário.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: continuidade da função

Mensagempor Sherminator » Sex Nov 16, 2012 14:40

g(x) = \frac{{x}^{3}-8}{\sqrt[]{2x+5}} , se , x>2


Para a primeira só está a faltar o 3- antes da raiz quadrada que não estou a conseguir
Sherminator
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Sáb Out 20, 2012 09:50
Formação Escolar: ENSINO MÉDIO
Área/Curso: Gestão de Empresas
Andamento: cursando

Re: continuidade da função

Mensagempor MarceloFantini » Sex Nov 16, 2012 15:01

Quase lá. O código é

Código: Selecionar todos
g(x) = \begin{cases}
\frac{x^3 -8}{3 - \sqrt{2x+5}}, & \text{ se } x >2 \\
|x-8|, & \text{ se } x \leq 2.
\end{cases}


que dá

g(x) = \begin{cases} 
\frac{x^3 -8}{3 - \sqrt{2x+5}}, & \text{ se } x >2 \\
|x-8|, & \text{ se } x \leq 2.
\end{cases}

Agora: qual é a questão? Você só colocou a função e "para x=2".
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: continuidade da função

Mensagempor Sherminator » Sex Nov 16, 2012 15:07

Obrigado :-D valeu, para a próxima tento fazer melhor

A questão é para estudar a continuidade da função g no ponto indicado. Como posso resolver?
Sherminator
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Sáb Out 20, 2012 09:50
Formação Escolar: ENSINO MÉDIO
Área/Curso: Gestão de Empresas
Andamento: cursando

Re: continuidade da função

Mensagempor MarceloFantini » Sex Nov 16, 2012 16:48

Calcule \lim_{x \to 2^+} \frac{x^3 -8}{3 - \sqrt{2x+5}} e veja se o resultado é 6, que é o valor da função em x=2. Este valor foi obtido usando a regra da função, que está definida como |x-8| para x \leq 2, portanto g(2) = |2-8| = |-6| = 6.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: continuidade da função

Mensagempor Sherminator » Sáb Nov 17, 2012 08:53

Não estou a entender muito bem, a função de cima dá zero, verdade? E a de baixo dá 6, nesse caso não é contínua, correto? Devido aos limites laterais não serem iguais é isso?

Terei de resolver a indeterminação da de cima?
Sherminator
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Sáb Out 20, 2012 09:50
Formação Escolar: ENSINO MÉDIO
Área/Curso: Gestão de Empresas
Andamento: cursando

Re: continuidade da função

Mensagempor MarceloFantini » Sáb Nov 17, 2012 09:04

Segundo o Wolfram o limite é -36. Como o resultado é diferente do valor da função, não é contínua. :y:
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: continuidade da função

Mensagempor Sherminator » Sáb Nov 17, 2012 09:10

Pode-me deixar aqui a resolução completa de como chego ao -36 se faz favor? É que não estou conseguindo.
Sherminator
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Sáb Out 20, 2012 09:50
Formação Escolar: ENSINO MÉDIO
Área/Curso: Gestão de Empresas
Andamento: cursando

Re: continuidade da função

Mensagempor Sherminator » Dom Nov 18, 2012 16:31

Alguém me dá uma ajudinha a resolver a indeterminação se faz favor?
Sherminator
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Sáb Out 20, 2012 09:50
Formação Escolar: ENSINO MÉDIO
Área/Curso: Gestão de Empresas
Andamento: cursando

Re: continuidade da função

Mensagempor MarceloFantini » Dom Nov 18, 2012 23:31

Ainda não tive tempo de fazer a conta por extenso, por isso usei o Wolfram. Quando conseguir posto.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: continuidade da função

Mensagempor Sherminator » Ter Nov 20, 2012 10:25

\frac{x^3 -8}{3 - \sqrt{2x+5}} * \frac{3 + \sqrt{2x+5}}{3 + \sqrt{2x+5}}

\frac{x^3 -8*3 + \sqrt{2x+5}}{9-2x-5}

\frac{(x-2)(x^2+2x+4)*3 + \sqrt{2x+5}}{2(x-2)}

Aqui corta os dois (x-2)

Depois é só substituir e dá 36, está correto o procedimento?
Sherminator
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Sáb Out 20, 2012 09:50
Formação Escolar: ENSINO MÉDIO
Área/Curso: Gestão de Empresas
Andamento: cursando

Re: continuidade da função

Mensagempor MarceloFantini » Ter Nov 20, 2012 10:40

Apenas corrigi algumas coisas:

\frac{x^3 -8}{3 - \sqrt{2x+5}} \cdot \frac{3 + \sqrt{2x+5}}{3 + \sqrt{2x+5}}

= \frac{(x^3 -8) \cdot (3 + \sqrt{2x+5})}{9-2x-5}

= \frac{(x-2)(x^2+2x+4) \cdot (3 + \sqrt{2x+5})}{-2(x-2)}.

Note que na última passagem você encontra o denominador -2x -4 = -2(x-2), por isso dá negativo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: continuidade da função

Mensagempor Sherminator » Ter Nov 20, 2012 12:55

Obrigado, ainda demoro bastante tempo a postar as funções, por isso dou alguns erros :-D

No denominador descuidei-me com o sinal, mas já vi o erro :y:
Sherminator
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Sáb Out 20, 2012 09:50
Formação Escolar: ENSINO MÉDIO
Área/Curso: Gestão de Empresas
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.