por Sherminator » Sex Nov 16, 2012 13:13
Boa tarde, alguém me ajuda a resolver este problema?

-
Sherminator
- Usuário Dedicado

-
- Mensagens: 34
- Registrado em: Sáb Out 20, 2012 09:50
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Gestão de Empresas
- Andamento: cursando
por MarceloFantini » Sex Nov 16, 2012 13:38
Sherminator, use figuras apenas se estritamente necessário. Utilize LaTeX para redigir suas equações. Seu tópico não deverá ser respondido até estar de acordo com as regras.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Sherminator » Sex Nov 16, 2012 14:18
Peço desculpa, sou novo aqui, já estive a tentar mas acho super complicado, qualquer das formas vou tentar.
-
Sherminator
- Usuário Dedicado

-
- Mensagens: 34
- Registrado em: Sáb Out 20, 2012 09:50
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Gestão de Empresas
- Andamento: cursando
por MarceloFantini » Sex Nov 16, 2012 14:21
Tente, arrumamos o código se necessário.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Sherminator » Sex Nov 16, 2012 14:40
![g(x) = \frac{{x}^{3}-8}{\sqrt[]{2x+5}} , se , x>2 g(x) = \frac{{x}^{3}-8}{\sqrt[]{2x+5}} , se , x>2](/latexrender/pictures/f54701dda903beabda8de0cd489c8881.png)
Para a primeira só está a faltar o 3- antes da raiz quadrada que não estou a conseguir
-
Sherminator
- Usuário Dedicado

-
- Mensagens: 34
- Registrado em: Sáb Out 20, 2012 09:50
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Gestão de Empresas
- Andamento: cursando
por MarceloFantini » Sex Nov 16, 2012 15:01
Quase lá. O código é
- Código: Selecionar todos
g(x) = \begin{cases}
\frac{x^3 -8}{3 - \sqrt{2x+5}}, & \text{ se } x >2 \\
|x-8|, & \text{ se } x \leq 2.
\end{cases}
que dá

Agora: qual é a questão? Você só colocou a função e "para x=2".
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Sherminator » Sex Nov 16, 2012 15:07
Obrigado

valeu, para a próxima tento fazer melhor
A questão é para estudar a continuidade da função g no ponto indicado. Como posso resolver?
-
Sherminator
- Usuário Dedicado

-
- Mensagens: 34
- Registrado em: Sáb Out 20, 2012 09:50
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Gestão de Empresas
- Andamento: cursando
por MarceloFantini » Sex Nov 16, 2012 16:48
Calcule

e veja se o resultado é 6, que é o valor da função em

. Este valor foi obtido usando a regra da função, que está definida como

para

, portanto

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Sherminator » Sáb Nov 17, 2012 08:53
Não estou a entender muito bem, a função de cima dá zero, verdade? E a de baixo dá 6, nesse caso não é contínua, correto? Devido aos limites laterais não serem iguais é isso?
Terei de resolver a indeterminação da de cima?
-
Sherminator
- Usuário Dedicado

-
- Mensagens: 34
- Registrado em: Sáb Out 20, 2012 09:50
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Gestão de Empresas
- Andamento: cursando
por MarceloFantini » Sáb Nov 17, 2012 09:04
Segundo o
Wolfram o limite é -36. Como o resultado é diferente do valor da função, não é contínua.

Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Sherminator » Sáb Nov 17, 2012 09:10
Pode-me deixar aqui a resolução completa de como chego ao -36 se faz favor? É que não estou conseguindo.
-
Sherminator
- Usuário Dedicado

-
- Mensagens: 34
- Registrado em: Sáb Out 20, 2012 09:50
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Gestão de Empresas
- Andamento: cursando
por Sherminator » Dom Nov 18, 2012 16:31
Alguém me dá uma ajudinha a resolver a indeterminação se faz favor?
-
Sherminator
- Usuário Dedicado

-
- Mensagens: 34
- Registrado em: Sáb Out 20, 2012 09:50
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Gestão de Empresas
- Andamento: cursando
por MarceloFantini » Dom Nov 18, 2012 23:31
Ainda não tive tempo de fazer a conta por extenso, por isso usei o Wolfram. Quando conseguir posto.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por MarceloFantini » Ter Nov 20, 2012 10:40
Apenas corrigi algumas coisas:



.
Note que na última passagem você encontra o denominador

, por isso dá negativo.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Sherminator » Ter Nov 20, 2012 12:55
Obrigado, ainda demoro bastante tempo a postar as funções, por isso dou alguns erros
No denominador descuidei-me com o sinal, mas já vi o erro

-
Sherminator
- Usuário Dedicado

-
- Mensagens: 34
- Registrado em: Sáb Out 20, 2012 09:50
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Gestão de Empresas
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Continuidade de função
por marinalcd » Qui Ago 23, 2012 20:52
- 0 Respostas
- 974 Exibições
- Última mensagem por marinalcd

Qui Ago 23, 2012 20:52
Funções
-
- Continuidade da função
por Lenin » Qua Set 25, 2013 21:21
- 1 Respostas
- 1275 Exibições
- Última mensagem por Man Utd

Qua Set 25, 2013 21:35
Cálculo: Limites, Derivadas e Integrais
-
- Estudo da [continuidade] de uma função
por Teh_eng » Qui Mai 03, 2012 13:43
- 1 Respostas
- 1266 Exibições
- Última mensagem por Russman

Qui Mai 03, 2012 14:52
Cálculo: Limites, Derivadas e Integrais
-
- [Continuidade de função] Demonstração
por Gustavo Gomes » Qui Nov 08, 2012 21:41
- 2 Respostas
- 1453 Exibições
- Última mensagem por Gustavo Gomes

Sex Nov 09, 2012 21:33
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Continuidade - Função
por raimundoocjr » Ter Mai 07, 2013 20:16
- 1 Respostas
- 1157 Exibições
- Última mensagem por e8group

Ter Mai 07, 2013 21:16
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.