• Anúncio Global
    Respostas
    Exibições
    Última mensagem

derivada de função

derivada de função

Mensagempor SILMARAKNETSCH » Qua Nov 14, 2012 14:47

fx=\sqrt{x} +  x^3
SILMARAKNETSCH
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Seg Out 29, 2012 14:20
Formação Escolar: GRADUAÇÃO
Área/Curso: administração EAD prouni deficiente físi
Andamento: cursando

Re: derivada de função

Mensagempor SILMARAKNETSCH » Qua Nov 14, 2012 14:49

SILMARAKNETSCH escreveu:fx=\sqrt{x} +  x^3


como derivar ? com raiz ? alguem pode ensinar o passo a passo? agradeço antecipadamente.
SILMARAKNETSCH
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Seg Out 29, 2012 14:20
Formação Escolar: GRADUAÇÃO
Área/Curso: administração EAD prouni deficiente físi
Andamento: cursando

Re: derivada de função

Mensagempor e8group » Qua Nov 14, 2012 17:31

Generalizando , sempre que você depara com uma raiz de índice n , isto é \sqrt[n]{x} , você pode escrever \sqrt[n]{x} como x^{\frac{1}{n} } , n \neq 0 . Para derivar , a regra é a mesma que x^{m} . .

Assim , \boxed{ ( \sqrt[n]{x} ) '   =   (   x^{\frac{1}{n} } )'   =    \frac{1}{n}  \cdot   x^{\frac{1}{n}  -   1}    =     \frac{1}{n}  \cdot x^{ \frac{1}{n}  -   1 \cdot  \frac{n}{n}  }    =   \frac{1}{n}  \cdot   x^{\frac{ 1 - n}{n} } } .


Tente aplicar isto a este exercício , se você não conseguir post algo .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: derivada de função

Mensagempor SILMARAKNETSCH » Qua Nov 14, 2012 17:47

santhiago escreveu:Generalizando , sempre que você depara com uma raiz de índice n , isto é \sqrt[n]{x} , você pode escrever \sqrt[n]{x} como x^{\frac{1}{n} } , n \neq 0 . Para derivar , a regra é a mesma que x^{m} . .

Assim , \boxed{ ( \sqrt[n]{x} ) '   =   (   x^{\frac{1}{n} } )'   =    \frac{1}{n}  \cdot   x^{\frac{1}{n}  -   1}    =     \frac{1}{n}  \cdot x^{ \frac{1}{n}  -   1 \cdot  \frac{n}{n}  }    =   \frac{1}{n}  \cdot   x^{\frac{ 1 - n}{n} } } .


Tente aplicar isto a este exercício , se você não conseguir post algo .

nossa fiquei confusa con o n e m e essa formula inteira é apenas para a minha primeira raiz do exercício? depois que entra o +x³?
SILMARAKNETSCH
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Seg Out 29, 2012 14:20
Formação Escolar: GRADUAÇÃO
Área/Curso: administração EAD prouni deficiente físi
Andamento: cursando

Re: derivada de função

Mensagempor SILMARAKNETSCH » Qua Nov 14, 2012 17:58

nossa santhiago parece que to vendo grego só com a fórmula não sei aplicar nela.
SILMARAKNETSCH
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Seg Out 29, 2012 14:20
Formação Escolar: GRADUAÇÃO
Área/Curso: administração EAD prouni deficiente físi
Andamento: cursando

Re: derivada de função

Mensagempor e8group » Qua Nov 14, 2012 18:37

Ok . Vamos por partes ,

f(x) =  \sqrt{x}  + x^3


\sqrt{x} =  x^{1/2} daí , (\sqrt{x} )'  =   ( x^{1/2}  )'  =        \frac{1}{2} \cdot  x^{1/2  - 1 }  =   \frac{1}{2} \cdot x^{-1/2}     =  \frac{1}{2 \cdot x^{1/2}  }  =  \frac{1} {2 \cdot \sqrt{x}  } .

Já , ( x^3  )'  =    3 \cdot x^{3 - 1}  =  3 \cdot x^2

Ou seja , \boxed{  f' (x) = ( \sqrt{x}  + x^3  )'  =  (\sqrt{x} )'  +  ( x^3  )'  =   \frac{1} {2 \cdot \sqrt{x}  } +   3 \cdot x^2  }



Por favor , se a dúvida permanecer , post algo .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: derivada de função

Mensagempor SILMARAKNETSCH » Qua Nov 14, 2012 19:03

puxa vida obrigado en funções eu coloquei um recado que gostaria que vc fosse ler se possível é um agradecimento de tanto que este site fez por mim no caso vcs colaboradores.
SILMARAKNETSCH
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Seg Out 29, 2012 14:20
Formação Escolar: GRADUAÇÃO
Área/Curso: administração EAD prouni deficiente físi
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59