por MrJuniorFerr » Sáb Nov 10, 2012 20:19
Olá a todos, tentei resolver o seguinte problema da minha lista de integrais:
Se um automóvel parte do repouso, qual a aceleração constante que lhe permitirá percorrer 150 metros em 10 segundos?Não consegui resolver pelo cálculo somente a partir destes dados.
Tentei o seguinte:

, derivando ambos os lados da igualdade em função de t:


, como podem ver, não deu certo da forma q tentei resolver...
Tentei resolver também pela física, mas meu resultado deu:

, sendo que de acordo com o gabarito, deveria dar

Alguém pode me ajudar?
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
por young_jedi » Sáb Nov 10, 2012 20:42
fala MrjuniorFerr
considerando a aceleração como uma constante a
temos que

então

então

como ele parte do repouso então a veocidade em t=0 é v=0 portanto concluimos que c=0 então a equação da velocidade é

temos tambem que




lenvando em consideração que ele parte de s=0 então a constante c=0.

para um deslocamento de 150 em 10 segundos



-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por MrJuniorFerr » Sáb Nov 10, 2012 21:22
Obrigado Jedi.
Eu me confundi porque eu achava que eu teria que achar a função aceleração... eu não havia me ligado que eu poderia descobrir a aceleração na função espaço.
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
por young_jedi » Sáb Nov 10, 2012 21:37
é isso ai mesmo, repare que esta equação do movimento uniformemente variado vem justamente da definição do calculo para aceleração velocidade e deslocamento
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integrais] Problema com resolucao
por gabrielnandi » Qui Jun 28, 2012 01:25
- 1 Respostas
- 1530 Exibições
- Última mensagem por Russman

Qui Jun 28, 2012 08:12
Cálculo: Limites, Derivadas e Integrais
-
- Integral de uma Aceleração
por Atirador » Sáb Nov 18, 2017 18:36
- 0 Respostas
- 5230 Exibições
- Última mensagem por Atirador

Sáb Nov 18, 2017 18:36
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas - Velocidade e Aceleração
por Fabio Cabral » Ter Jun 14, 2011 14:49
- 1 Respostas
- 4349 Exibições
- Última mensagem por carlosalesouza

Ter Jun 14, 2011 15:40
Cálculo: Limites, Derivadas e Integrais
-
- Derivada, velocidade e aceleração
por Janoca » Ter Jun 24, 2014 17:08
- 1 Respostas
- 1647 Exibições
- Última mensagem por Janoca

Ter Jun 24, 2014 18:45
Cálculo: Limites, Derivadas e Integrais
-
- [Urgente] Integrar uma aceleração dada
por grey » Qua Fev 15, 2017 19:08
- 1 Respostas
- 2090 Exibições
- Última mensagem por adauto martins

Qui Fev 16, 2017 17:12
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.