por ricardosanto » Sex Nov 02, 2012 12:05
Calcule a área de região R de intercessão das curvas: y=0, y=x³-x e x = 1

muito obrigado
-
ricardosanto
- Usuário Dedicado

-
- Mensagens: 33
- Registrado em: Seg Abr 16, 2012 12:17
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia civil
- Andamento: cursando
por young_jedi » Sex Nov 02, 2012 17:12
primeiro voce tem que determinar os limites de integração, se é delimitado por x=1 e y=0 então, temos que para y=0 substituindo na função

encontra-se x=0
então a integral fica

tente resolver a integral e comente qualquer duvida.
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral dupla]definir região de integração
por jeferson_justo135 » Qua Jan 14, 2015 21:17
- 8 Respostas
- 6102 Exibições
- Última mensagem por jeferson_justo135

Seg Fev 09, 2015 17:07
Cálculo: Limites, Derivadas e Integrais
-
- Integral, área da região limitada.
por Maicon Simoes » Qui Abr 19, 2012 10:58
- 1 Respostas
- 1932 Exibições
- Última mensagem por LuizAquino

Qui Abr 19, 2012 15:00
Cálculo: Limites, Derivadas e Integrais
-
- Integral, achar a área da região entre as curvas
por Janoca » Sex Jun 06, 2014 17:24
- 5 Respostas
- 4948 Exibições
- Última mensagem por alienante

Dom Jun 15, 2014 21:42
Cálculo: Limites, Derivadas e Integrais
-
- Integral dupla, área.
por ricardosanto » Qui Dez 13, 2012 18:21
- 1 Respostas
- 1970 Exibições
- Última mensagem por Russman

Qui Dez 13, 2012 20:40
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAL DUPLA] Área do conjunto de integração
por Matemagica » Sáb Dez 14, 2013 05:31
- 2 Respostas
- 2656 Exibições
- Última mensagem por Russman

Sáb Dez 14, 2013 23:51
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.