• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[crescimento percentual] Cálculo de renda e PIB

[crescimento percentual] Cálculo de renda e PIB

Mensagempor camargo92 » Seg Out 29, 2012 10:10

Olá a todos, meu professor passou a seguinte questão e estou com dificuldades para resolver, não consigo montar a resolução do exercício.

"A renda per capita, calculada pela relação entre o PIB (Produto Interno Bruto) e a população, é um indicador de produtividade de um país. Em face da crise por qual passamos, vários foram o órgãos que estimaram um decréscimo do PIB brasileiro em 1999. Entretanto, os fatos demonstraram que houve um pequeno acréscimo estimado em 0,5%. Supondo um crescimento de 1.8% da população do Brasil naquele dado ano, calcular de quanto deverá ser o PIB no próximo ano (2000) para que a renda per capita atinja o mesmo nível de 1998, supondo que a população continue crescendo a uma taxa de 1,8% ao ano."

Agradeço desde já.
camargo92
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Out 29, 2012 09:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [crescimento percentual] Cálculo de renda e PIB

Mensagempor young_jedi » Seg Out 29, 2012 12:14

a redna per capta de 1998 é igual a

\frac{PIB}{p}

onde p é a população

se a população cresce a taxa de 1,8% ao ano a população de 1999 sera

p.1,018

e em 2000 sera

p.(1,018)^2

ja o PIB teve um acrescimo de 0,5 % então o PIB em 1999 sera

PIB.1,005

supondo um acrescimo x no PIB de 1999 para 2000, temos que a renda per capita de 2000 sera dada por

\frac{PIB.1,005.(1+x)}{p.(1,018)^2}

igaulando a de 1998

\frac{PIB.1,005.(1+x)}{p.(1,018)^2}=\frac{PIB}{p}

simplificando termos

\frac{1,005.(1+x)}{(1,018)^2}=1

resolvendo encontramos a taxa de crescimento x para 2000 do PIB
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [crescimento percentual] Cálculo de renda e PIB

Mensagempor camargo92 » Seg Out 29, 2012 15:02

young_jedi escreveu:a redna per capta de 1998 é igual a

\frac{PIB}{p}

onde p é a população

se a população cresce a taxa de 1,8% ao ano a população de 1999 sera

p.1,018

e em 2000 sera

p.(1,018)^2

ja o PIB teve um acrescimo de 0,5 % então o PIB em 1999 sera

PIB.1,005

supondo um acrescimo x no PIB de 1999 para 2000, temos que a renda per capita de 2000 sera dada por

\frac{PIB.1,005.(1+x)}{p.(1,018)^2}

igaulando a de 1998

\frac{PIB.1,005.(1+x)}{p.(1,018)^2}=\frac{PIB}{p}

simplificando termos

\frac{1,005.(1+x)}{(1,018)^2}=1

resolvendo encontramos a taxa de crescimento x para 2000 do PIB





muito obrigado! era o que eu precisava.

vlw
camargo92
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Out 29, 2012 09:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.