por ivanilda » Dom Out 28, 2012 15:04
Ola posso contar com vcs???
nao consigo comecar a desenvolver...
determine o dominio da funcao
desculpe por não observar as regras....
f((x,y) =
![\sqrt{9- [tex] x^2 - y} \sqrt{9- [tex] x^2 - y}](/latexrender/pictures/b273febfa58f4cb5d972228481ba982f.png)
Editado pela última vez por
ivanilda em Dom Out 28, 2012 18:36, em um total de 1 vez.
-
ivanilda
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Seg Dez 05, 2011 23:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: formado
por MarceloFantini » Dom Out 28, 2012 15:55
Ivanilda, por favor atente para as regras do fórum, em especial a regra número 5. Seu tópico não deverá ser respondido até estar de acordo com as regras.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- calculo diferencial III
por ivanilda » Sáb Out 13, 2012 00:22
- 1 Respostas
- 1529 Exibições
- Última mensagem por MarceloFantini

Sáb Out 13, 2012 01:01
Cálculo: Limites, Derivadas e Integrais
-
- (Calculo II) diferencial
por 1marcus » Dom Jun 21, 2020 15:13
- 1 Respostas
- 3076 Exibições
- Última mensagem por adauto martins

Ter Jun 23, 2020 14:57
Cálculo: Limites, Derivadas e Integrais
-
- cálculo diferencial e integral
por Neperiano » Qua Out 08, 2008 22:20
- 4 Respostas
- 6930 Exibições
- Última mensagem por admin

Ter Out 14, 2008 16:41
Cálculo: Limites, Derivadas e Integrais
-
- calculo integral e diferencial
por edilainemorais » Qui Fev 20, 2014 18:15
- 0 Respostas
- 1892 Exibições
- Última mensagem por edilainemorais

Qui Fev 20, 2014 18:15
Cálculo: Limites, Derivadas e Integrais
-
- cálculo diferencial e integral II
por Luiz vicente » Seg Mar 06, 2017 13:30
- 0 Respostas
- 6533 Exibições
- Última mensagem por Luiz vicente

Seg Mar 06, 2017 13:30
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.