por manuela » Qui Out 18, 2012 20:02
A temperatura em graus Celsius num ponto (x,y,z) de um sólido metálico é dado por:

a) Determine a taxa de variação da temperatura no ponto (1,1,1) na direção e sentido à origem.
b) Determine a direção e o sentido em que a temperatura cresce mais rapidamente a partir do ponto (1,1,1).
c) Determine a taxa de variação da temperatura no ponto (1,1,1), na direção e no sentido obtido no item b.
Bom, só consegui fazer a letra a. Calculei o vetor gradiente e multipliquei pelo ponto dado.
Mas não estou conseguindo fazer os outros itens.
Poderiam me ajudar?
-
manuela
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qui Out 18, 2012 19:52
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por MarceloFantini » Qui Out 18, 2012 21:22
Para calcular a taxa de variação você calcula a derivada direcional no vetor dado. A direção e sentido que a taxa de variação crescerá mais rapidamente será dada pelo gradiente da função, enquanto que o valor será o módulo do gradiente.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por manuela » Sex Out 19, 2012 16:51
Para calcular a taxa de variação, calculei o vetor gradiente de T no ponto dado: (1,1,1). Mas como calculo o vetor u para poder multiplicar o vetor gradiente achando a taxa de variação?
-
manuela
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qui Out 18, 2012 19:52
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por MarceloFantini » Sex Out 19, 2012 22:02
Seja

um vetor unitário. Então pela definição de taxa de variação (ou derivada direcional) temos que

.
Esta direção será máxima se e somente se esta expressão será máxima, que ocorre em

, pois

. Portanto a taxa de variação na direção máxima faz ângulo zero com o vetor gradiente, ou seja, é o próprio vetor gradiente, e seu valor é

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Taxa de variação
por felipe_ad » Ter Jun 29, 2010 19:44
- 2 Respostas
- 29672 Exibições
- Última mensagem por Guill

Ter Fev 21, 2012 21:17
Cálculo: Limites, Derivadas e Integrais
-
- Taxa de variação
por AlbertoAM » Sáb Mai 21, 2011 14:23
- 1 Respostas
- 4062 Exibições
- Última mensagem por LuizAquino

Dom Mai 22, 2011 13:03
Cálculo: Limites, Derivadas e Integrais
-
- Taxa de Variação
por AlbertoAM » Sáb Mai 28, 2011 15:53
- 10 Respostas
- 9121 Exibições
- Última mensagem por AlbertoAM

Ter Mai 31, 2011 21:32
Cálculo: Limites, Derivadas e Integrais
-
- Taxa de Variação
por Pollyanna Moraes » Sáb Out 22, 2011 17:37
- 1 Respostas
- 7848 Exibições
- Última mensagem por LuizAquino

Dom Out 23, 2011 10:15
Cálculo: Limites, Derivadas e Integrais
-
- taxa de variacao
por cal12 » Dom Nov 27, 2011 16:46
- 3 Respostas
- 4604 Exibições
- Última mensagem por Russman

Sex Jun 29, 2012 22:01
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.