• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada

Derivada

Mensagempor mayconf » Sáb Set 29, 2012 17:36

eai galera to com dificuldade em resolver essa derivada mais especificamente no "x elevado a -3" se alguém puder me ajudar
g(x)=1+\frac{1}{x{}^{-3}}+\frac{1}{x}+\frac{1}{x{}^{2}}
mayconf
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Set 21, 2012 12:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Derivada

Mensagempor DanielFerreira » Sáb Set 29, 2012 18:00

Olá Mayconf,
boa tarde!

Dica:

\\ \frac{1}{x^{- 3}} = \\\\\\ \left ( \frac{1}{x^{- 3}} \right ) = \\\\\\ \left ( x^{- 3} \right )^{- 1} = \\\\ x^3

Espero que ajuda, caso contrário, retorne ok?!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Derivada

Mensagempor mayconf » Sáb Set 29, 2012 18:06

vlw aew danjr5 brigadão :D
mayconf
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Set 21, 2012 12:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Derivada

Mensagempor Russman » Sáb Set 29, 2012 18:13

Observe que a derivada de uma soma de funções é a soma das derivadas das mesmas. Ainda,

\frac{1}{x^n}=x^{-n},x\neq 0,n\in\mathbb{N},

e

\frac{\mathrm{d} }{\mathrm{d} x}x^n = n.x^{n-1}

Exemplo.

f(x) = \frac{1}{x^2}-\frac{1}{x^{-4}}\Rightarrow \frac{\mathrm{d} }{\mathrm{d} x}f(x)=\frac{\mathrm{d} }{\mathrm{d} x}\frac{1}{x^2} -\frac{\mathrm{d} }{\mathrm{d} x}\frac{1}{x^{-4}} = \frac{\mathrm{d} }{\mathrm{d} x}x^{-2} - \frac{\mathrm{d} }{\mathrm{d} x}x^4 = -2x^{-3}-4x^3 = -\frac{2}{x^3}-4x^3.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Derivada

Mensagempor DanielFerreira » Sáb Set 29, 2012 18:23

mayconf escreveu:vlw aew danjr5 brigadão :D

Não há de quê! A propósito, o quê encontrou como resposta?
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Derivada

Mensagempor mayconf » Sáb Set 29, 2012 19:15

danjr5 escreveu:
mayconf escreveu:vlw aew danjr5 brigadão :D

Não há de quê! A propósito, o quê encontrou como resposta?

encontrei g(x)= 3x{}^{2}-x{}^{-2}-2x{}^{-3}
mayconf
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Set 21, 2012 12:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Derivada

Mensagempor DanielFerreira » Sáb Set 29, 2012 19:39

Confere!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Derivada

Mensagempor mayconf » Dom Set 30, 2012 01:15

:D brigadão mesmo ai
mayconf
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Set 21, 2012 12:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59