• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[ LIMITE] Limite com módulo!

[ LIMITE] Limite com módulo!

Mensagempor mih123 » Qua Set 12, 2012 17:26

Olá, estou em dúvida em alguns exercícios de limite com módulo. Tentei fazer este aqui,mas não sei como fazer os dois limites laterais!

\lim_{x\to5/3}\sqrt[2]{\left|x \right|+\left|\left|3x \right| \right|+4}
mih123
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Seg Ago 27, 2012 03:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [ LIMITE] Limite com módulo!

Mensagempor LuizAquino » Sex Set 14, 2012 16:32

mih123 escreveu:Olá, estou em dúvida em alguns exercícios de limite com módulo. Tentei fazer este aqui,mas não sei como fazer os dois limites laterais!

\lim_{x\to5/3}\sqrt[2]{\left|x \right|+\left|\left|3x \right| \right|+4}


Note que tanto para x\to \frac{5}{3}^+ quanto para x\to \frac{5}{3}^- temos que x e 3x são números positivos. Sendo assim, em ambos os casos teremos |x| = x e |3x| = 3x (e obviamente ||3x|| = |3x| = 3x).

\lim_{x\to\frac{5}{3}^+} \sqrt{\left|x \right|+\left|\left|3x \right| \right|+4} = \lim_{x\to\frac{5}{3}^+} \sqrt{x + 3x + 4} = \sqrt{\frac{5}{3} + 3\cdot\frac{5}{3} + 4} = \frac{4\sqrt{6}}{3}

\lim_{x\to\frac{5}{3}^-} \sqrt{\left|x \right|+\left|\left|3x \right| \right|+4} = \lim_{x\to\frac{5}{3}^-} \sqrt{x + 3x + 4} = \sqrt{\frac{5}{3} + 3\cdot\frac{5}{3} + 4} = \frac{4\sqrt{6}}{3}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [ LIMITE] Limite com módulo!

Mensagempor mih123 » Sex Set 14, 2012 20:07

Eu ainda tenho uma dúvida,quando será -\left|x \right|?? Pensei que nos limites laterais,um seria positivo e o outro negativo.Faço muita confusão com isso.
mih123
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Seg Ago 27, 2012 03:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [ LIMITE] Limite com módulo!

Mensagempor LuizAquino » Dom Set 16, 2012 11:11

mih123 escreveu:Eu ainda tenho uma dúvida,quando será -\left|x \right|?? Pensei que nos limites laterais,um seria positivo e o outro negativo.Faço muita confusão com isso.


O que você precisa entender a definição de módulo. Nós definimos que o módulo de um número real a (sendo que este módulo é representado por |a|), é tal que:

|a| = \begin{cases}a,\,\textrm{ se }a \geq 0 \\ -a,\,\textrm{ se } a < 0\end{cases}

Note que se a é um número negativo, então |a| = -a. Por exemplo, temos que |-2| = -(-2) = 2.

É isso que você precisa analisar no limite que tem módulo: o que está dentro do módulo é um número positivo ou negativo?

Vejamos um exemplo. Considere o limite abaixo:

\lim_{x\to 2} \dfrac{|3x - 6|}{x - 2}

Note que quando x se aproxima de 2 pela direita, ou seja x\to 2^+ , o número 3x - 6 é positivo. Faça um teste: escolha x = 2,1 e calcule 3x - 6. Dessa forma, como o número 3x - 6 é positivo, temos que |3x - 6| = 3x - 6 e ficamos com:

\lim_{x\to 2^+} \dfrac{3x - 6}{x - 2} = \lim_{x\to 2^+} \dfrac{3(x - 2)}{x - 2} = \lim_{x\to 2^+} 3 = 3

Por outro lado, note que quando x se aproxima de 2 pela esquerda, ou seja x\to 2^- , o número 3x - 6 é negativo. Faça um teste: escolha x = 1,9 e calcule 3x - 6. Dessa forma, como o número 3x - 6 é negativo, temos que |3x - 6| = -(3x - 6) e ficamos com:

\lim_{x\to 2^-} \dfrac{-(3x - 6)}{x - 2} = \lim_{x\to 2^-} \dfrac{-3(x - 2)}{x - 2} = \lim_{x\to 2^-} -3 = -3

Vamos agora considerar um outro exemplo. Seja o limite abaixo:

\lim_{x\to 5} \dfrac{|2x - 8|}{x - 4}

Nesse caso, note que quando x se aproxima de 5 tanto pela direita quanto pela esquerda, temos que o número 2x - 8 é positivo (e portanto |2x - 8| = 2x - 8 em ambos os limites laterais). Desse modo, temos que:

\lim_{x\to 5^+} \dfrac{2x - 8}{x - 4} = \dfrac{2\cdot 5 - 8}{5 - 4}  = 2

\lim_{x\to 5^-} \dfrac{2x - 8}{x - 4} = \dfrac{2\cdot 5 - 8}{5 - 4}  = 2

Agora tente você mesmo. Analise o limite abaixo:

\lim_{x\to 1} \dfrac{|2x - 4|}{x - 2}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.