por will94 » Sex Set 14, 2012 13:41
A principio dá uma indeterminação, mas que não consegui proceder de outras maneiras que não desse outra indeterminação
A resposta que tá no gabarito é
1/4![\lim_{x \rightarrow3} \frac{\sqrt[2]{1+x}-2}{x-3} \lim_{x \rightarrow3} \frac{\sqrt[2]{1+x}-2}{x-3}](/latexrender/pictures/909430a25ac2f579ddf3b7029bc7cf29.png)
Obrigado desde já

-
will94
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Ter Mai 22, 2012 20:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por mih123 » Sex Set 14, 2012 14:15
Olá, costumo fazer dessa maneira:
Fazendo as multiplicações,fica assim:
![\frac{(x-3)(x+3)}{(x-3)(x+3)(\sqrt[2]{1+x}+2)} \frac{(x-3)(x+3)}{(x-3)(x+3)(\sqrt[2]{1+x}+2)}](/latexrender/pictures/2887c98be615e4001bcf53d4ee2072e6.png)
Ai, sobra :
![\lim_{x\to3}\frac{1}{\sqrt[2]{1+x}+2} \lim_{x\to3}\frac{1}{\sqrt[2]{1+x}+2}](/latexrender/pictures/90bd1f46f835f51c41d218d31321b796.png)
Substituindo o x por 3, a resposta será 1/4.
-
mih123
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Seg Ago 27, 2012 03:15
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por will94 » Sex Set 14, 2012 19:55
mih123 escreveu:Olá, costumo fazer dessa maneira:
Fazendo as multiplicações,fica assim:
![\frac{(x-3)(x+3)}{(x-3)(x+3)(\sqrt[2]{1+x}+2)} \frac{(x-3)(x+3)}{(x-3)(x+3)(\sqrt[2]{1+x}+2)}](/latexrender/pictures/2887c98be615e4001bcf53d4ee2072e6.png)
Ai, sobra :
![\lim_{x\to3}\frac{1}{\sqrt[2]{1+x}+2} \lim_{x\to3}\frac{1}{\sqrt[2]{1+x}+2}](/latexrender/pictures/90bd1f46f835f51c41d218d31321b796.png)
Substituindo o x por 3, a resposta será 1/4.
Muito obrigado, conversei com meu professor hoje e ele disse pra eu tentar dessa forma!
-
will94
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Ter Mai 22, 2012 20:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [LIMITE] Exercício em que o limite não existe!
por mih123 » Qua Ago 29, 2012 17:14
- 3 Respostas
- 2325 Exibições
- Última mensagem por e8group

Sex Ago 31, 2012 12:21
Cálculo: Limites, Derivadas e Integrais
-
- Exercicio de Limite
por Claudin » Sáb Mai 14, 2011 17:01
- 2 Respostas
- 1769 Exibições
- Última mensagem por Claudin

Dom Mai 15, 2011 11:57
Cálculo: Limites, Derivadas e Integrais
-
- Exercício Limite
por Claudin » Sáb Mai 21, 2011 16:34
- 3 Respostas
- 1755 Exibições
- Última mensagem por Claudin

Ter Mai 24, 2011 11:52
Cálculo: Limites, Derivadas e Integrais
-
- exercício de Limite
por jr_freitas » Qui Out 06, 2011 11:56
- 7 Respostas
- 3274 Exibições
- Última mensagem por moyses

Sex Out 07, 2011 11:33
Cálculo: Limites, Derivadas e Integrais
-
- Exercício {limite}
por Danilo » Qua Abr 10, 2013 23:16
- 2 Respostas
- 1352 Exibições
- Última mensagem por Danilo

Ter Abr 23, 2013 11:44
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.