• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Exercicio de Limite

[Limite] Exercicio de Limite

Mensagempor will94 » Sex Set 14, 2012 13:41

A principio dá uma indeterminação, mas que não consegui proceder de outras maneiras que não desse outra indeterminação
A resposta que tá no gabarito é 1/4

\lim_{x \rightarrow3} \frac{\sqrt[2]{1+x}-2}{x-3}

Obrigado desde já ;)
will94
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Mai 22, 2012 20:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Limite] Exercicio de Limite

Mensagempor mih123 » Sex Set 14, 2012 14:15

Olá, costumo fazer dessa maneira:

\frac{\sqrt[2]{1+x}-2}{x-3}.\frac{(\sqrt[2]{1+x}+2).(x+3)}{(x+3)(\sqrt[2]{1+x}+2)}

Fazendo as multiplicações,fica assim:

\frac{(x-3)(x+3)}{(x-3)(x+3)(\sqrt[2]{1+x}+2)}

Ai, sobra :
\lim_{x\to3}\frac{1}{\sqrt[2]{1+x}+2}

Substituindo o x por 3, a resposta será 1/4.
mih123
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Seg Ago 27, 2012 03:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Limite] Exercicio de Limite

Mensagempor will94 » Sex Set 14, 2012 19:55

mih123 escreveu:Olá, costumo fazer dessa maneira:

\frac{\sqrt[2]{1+x}-2}{x-3}.\frac{(\sqrt[2]{1+x}+2).(x+3)}{(x+3)(\sqrt[2]{1+x}+2)}

Fazendo as multiplicações,fica assim:

\frac{(x-3)(x+3)}{(x-3)(x+3)(\sqrt[2]{1+x}+2)}

Ai, sobra :
\lim_{x\to3}\frac{1}{\sqrt[2]{1+x}+2}

Substituindo o x por 3, a resposta será 1/4.



Muito obrigado, conversei com meu professor hoje e ele disse pra eu tentar dessa forma!
will94
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Mai 22, 2012 20:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}