por will94 » Sex Set 14, 2012 13:41
A principio dá uma indeterminação, mas que não consegui proceder de outras maneiras que não desse outra indeterminação
A resposta que tá no gabarito é
1/4![\lim_{x \rightarrow3} \frac{\sqrt[2]{1+x}-2}{x-3} \lim_{x \rightarrow3} \frac{\sqrt[2]{1+x}-2}{x-3}](/latexrender/pictures/909430a25ac2f579ddf3b7029bc7cf29.png)
Obrigado desde já

-
will94
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Ter Mai 22, 2012 20:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por mih123 » Sex Set 14, 2012 14:15
Olá, costumo fazer dessa maneira:
Fazendo as multiplicações,fica assim:
![\frac{(x-3)(x+3)}{(x-3)(x+3)(\sqrt[2]{1+x}+2)} \frac{(x-3)(x+3)}{(x-3)(x+3)(\sqrt[2]{1+x}+2)}](/latexrender/pictures/2887c98be615e4001bcf53d4ee2072e6.png)
Ai, sobra :
![\lim_{x\to3}\frac{1}{\sqrt[2]{1+x}+2} \lim_{x\to3}\frac{1}{\sqrt[2]{1+x}+2}](/latexrender/pictures/90bd1f46f835f51c41d218d31321b796.png)
Substituindo o x por 3, a resposta será 1/4.
-
mih123
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Seg Ago 27, 2012 03:15
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por will94 » Sex Set 14, 2012 19:55
mih123 escreveu:Olá, costumo fazer dessa maneira:
Fazendo as multiplicações,fica assim:
![\frac{(x-3)(x+3)}{(x-3)(x+3)(\sqrt[2]{1+x}+2)} \frac{(x-3)(x+3)}{(x-3)(x+3)(\sqrt[2]{1+x}+2)}](/latexrender/pictures/2887c98be615e4001bcf53d4ee2072e6.png)
Ai, sobra :
![\lim_{x\to3}\frac{1}{\sqrt[2]{1+x}+2} \lim_{x\to3}\frac{1}{\sqrt[2]{1+x}+2}](/latexrender/pictures/90bd1f46f835f51c41d218d31321b796.png)
Substituindo o x por 3, a resposta será 1/4.
Muito obrigado, conversei com meu professor hoje e ele disse pra eu tentar dessa forma!
-
will94
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Ter Mai 22, 2012 20:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [LIMITE] Exercício em que o limite não existe!
por mih123 » Qua Ago 29, 2012 17:14
- 3 Respostas
- 2318 Exibições
- Última mensagem por e8group

Sex Ago 31, 2012 12:21
Cálculo: Limites, Derivadas e Integrais
-
- Exercicio de Limite
por Claudin » Sáb Mai 14, 2011 17:01
- 2 Respostas
- 1760 Exibições
- Última mensagem por Claudin

Dom Mai 15, 2011 11:57
Cálculo: Limites, Derivadas e Integrais
-
- Exercício Limite
por Claudin » Sáb Mai 21, 2011 16:34
- 3 Respostas
- 1743 Exibições
- Última mensagem por Claudin

Ter Mai 24, 2011 11:52
Cálculo: Limites, Derivadas e Integrais
-
- exercício de Limite
por jr_freitas » Qui Out 06, 2011 11:56
- 7 Respostas
- 3254 Exibições
- Última mensagem por moyses

Sex Out 07, 2011 11:33
Cálculo: Limites, Derivadas e Integrais
-
- Exercício {limite}
por Danilo » Qua Abr 10, 2013 23:16
- 2 Respostas
- 1333 Exibições
- Última mensagem por Danilo

Ter Abr 23, 2013 11:44
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.