por ivoski » Ter Ago 14, 2012 18:12
Quando por uma integral dupla se calculou o volume do solido sob a surficie z = f(x,y), e acima da regiao D do plano xy, obteve-se a seguinte soma de integrais repetidas:

a) Esboce a regiao D e exprima V por uma integral repetida na ordem de intergração invertida.
b) Calcule V para f(x,y) =

-
ivoski
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Ter Ago 14, 2012 17:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matematica
- Andamento: cursando
por LuizAquino » Qui Ago 23, 2012 18:32
ivoski escreveu:Quando por uma integral dupla se calculou o volume do solido sob a surficie z = f(x,y), e acima da regiao D do plano xy, obteve-se a seguinte soma de integrais repetidas:

a) Esboce a regiao D e exprima V por uma integral repetida na ordem de intergração invertida.
b) Calcule V para f(x,y) =

Vejamos o item a). A figura abaixo ilustra a região D.

- figura.png (36.07 KiB) Exibido 2323 vezes
Veja que todo o trabalho se resumiu a determinar a região delimitada pelos gráficos de

,

e

.
Analisando agora na ordem de integração invertida, precisamos escrever D no formato:

Analisando a figura acima, note que

. Além disso, note que x está delimitado a esquerda pelo gráfico de
![f_1(y) = \sqrt[3]{y} f_1(y) = \sqrt[3]{y}](/latexrender/pictures/a64e5d19aa0389807b8b34d8c4571570.png)
. Por outro lado, x está delimitado a direita pelo gráfico de

. Desse modo, temos que:
![D = \{(x,\,y)\,|\,1\leq y \leq 8 ,\, \sqrt[3]{y}\leq x \leq y\} D = \{(x,\,y)\,|\,1\leq y \leq 8 ,\, \sqrt[3]{y}\leq x \leq y\}](/latexrender/pictures/8d8c8cc738f98ae99a389e792fb86283.png)
Podemos então escrever que:
![V = \int_1^8\int_{\sqrt[3]{y}}^{y} f(x,\,y)\,dx\,dy V = \int_1^8\int_{\sqrt[3]{y}}^{y} f(x,\,y)\,dx\,dy](/latexrender/pictures/308a2e1307fd584f4a02f656b76fc877.png)
Agora tente resolver o item b).
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral dupla
por DanielFerreira » Sex Mar 16, 2012 23:56
- 2 Respostas
- 2730 Exibições
- Última mensagem por DanielFerreira

Sáb Mar 17, 2012 19:11
Cálculo: Limites, Derivadas e Integrais
-
- Integral dupla - 2
por DanielFerreira » Dom Mar 18, 2012 12:44
- 5 Respostas
- 3951 Exibições
- Última mensagem por DanielFerreira

Sex Mar 23, 2012 22:34
Cálculo: Limites, Derivadas e Integrais
-
- Integral dupla - 4
por DanielFerreira » Sex Abr 06, 2012 19:49
- 4 Respostas
- 2947 Exibições
- Última mensagem por DanielFerreira

Sex Abr 06, 2012 21:05
Cálculo: Limites, Derivadas e Integrais
-
- Integral dupla - 5
por DanielFerreira » Sex Abr 06, 2012 20:00
- 2 Respostas
- 1798 Exibições
- Última mensagem por DanielFerreira

Sex Abr 06, 2012 20:16
Cálculo: Limites, Derivadas e Integrais
-
- Integral dupla - 6
por DanielFerreira » Sáb Abr 14, 2012 22:54
- 1 Respostas
- 1516 Exibições
- Última mensagem por LuizAquino

Dom Abr 15, 2012 23:45
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.