• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Alguém pode me ajudar a resolver essa integral?

Alguém pode me ajudar a resolver essa integral?

Mensagempor V_Netto » Seg Jul 30, 2012 12:05

\int_{0}^{ln2}\:e^{x}(1-2e^{x})dx/1+e^{x} Eu comecei resolvendo por substituição, chamando u=e^{x} e cheguei na seguinte integral: \int_{0}^{ln2} (1-2u)du/1+u . Depois eu dividi o numerador pelo denominador (divisão de polinômios) e encontrei -2\int_{0}^{ln2} [(u+1)+3]du/1+u e agora não sei como sair disso...
V_Netto
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Jul 30, 2012 11:45
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso Técnico em Química
Andamento: formado

Re: Alguém pode me ajudar a resolver essa integral?

Mensagempor Russman » Seg Jul 30, 2012 12:54

Para superar o empasse basta tomar u+1=v.

Lembre-se que quando efetuada a mudança de variável u=e^x os limites de integração passam a ser 1 e 2.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.