• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinar a função

Determinar a função

Mensagempor yonara » Ter Jun 30, 2009 20:19

Pessoal, esta questão está no meu trabalho, quero pedir a ajuda de vcs, pq me desculpem, mas eu não sei nem começar a fazer... :oops:

Determine todos os pontos onde a função f(x) = \frac{4x}{1+{x}^{2}} possui extremo relativo e esboce o seu gráfico.
yonara
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Jun 30, 2009 18:45
Formação Escolar: GRADUAÇÃO
Área/Curso: medicina veterinária
Andamento: cursando

Re: Determinar a função

Mensagempor Felipe Schucman » Seg Ago 03, 2009 21:15

Para derivar essa função precisamos usar a formula de derivação de um quociente (f(x)/g(x) )?= (f?(x)g(x) ? f(x)g?(x))/g(x)^2

yonara escreveu:Pessoal, esta questão está no meu trabalho, quero pedir a ajuda de vcs, pq me desculpem, mas eu não sei nem começar a fazer... :oops:

Determine todos os pontos onde a função f(x) = \frac{4x}{1+{x}^{2}} possui extremo relativo e esboce o seu gráfico.


Assim aplicando a formula fica assim f(x) = \frac{4x}{1+{x}^{2}} ----> f´(x)= (4*(1+x^2) ? 4x*2x)/ (1+x^2)^2. Simplificando essa expressão e igualando a zero você tera os pontos criticos falta testar se são maximo e minimos(pois podem ser pontos de inflexão apenas) e se estão dentro do dominio, e pronto você tera a resposta!

Um abraço!
Felipe Schucman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 52
Registrado em: Ter Jul 28, 2009 17:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia e Direito
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.