• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas]- Otimização

[Derivadas]- Otimização

Mensagempor Lucas Monteiro » Seg Jun 25, 2012 18:49

Suponha que devido às condições de relevo de um terreno onde se deseja construir um galpão retangular, o custo de cada metro linear de duas paredes paralelas seja R$ 50,00, enquanto que cada metro linear das outras paredes pode ser construído por apenas R$ 27,00. Se o galpão a ser construído deve ter 600m² de área, calcule as dimensões que minimizam o custo da construção das paredes.
Lucas Monteiro
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Jun 25, 2012 18:40
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Derivadas]- Otimização

Mensagempor LuizAquino » Ter Jun 26, 2012 12:13

Lucas Monteiro escreveu:Suponha que devido às condições de relevo de um terreno onde se deseja construir um galpão retangular, o custo de cada metro linear de duas paredes paralelas seja R$ 50,00, enquanto que cada metro linear das outras paredes pode ser construído por apenas R$ 27,00. Se o galpão a ser construído deve ter 600m² de área, calcule as dimensões que minimizam o custo da construção das paredes.


Suponha que x seja a medida (em metros) de cada parede que custa R$ 50,00 o metro. Como a área deve ser de 600 m², temos que as outras duas paredes devem medir 600/x cada uma.

Nesse contexto, o custo da construção será dado pela função:

c(x) = 100x + \frac{32.400}{x}

Agora tente concluir o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Derivadas]- Otimização

Mensagempor Lucas Monteiro » Ter Jun 26, 2012 17:14

Valeu Professor, consegui resolver! Obrigado.
Lucas Monteiro
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Jun 25, 2012 18:40
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.